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One can observe that if we consider M2×3, the collection of all 2 × 3 matrices, there are
two operations defined: the matrix addition - defined between two matrices - and the scalar
multiplication - between a matrix and a number. These operations enjoy lots of properties.
Motivated by those properties, we define the concept of a vector space:

Definition 0.1. A non empty set V together with two operations - vector addition ′+′ and
scalar multiplication ′.′ - is called a vector space if it satisfy the following properties (here we
assume that u, v, w are arbitrary elements of V and α, β are arbitrary real numbers):

1. u+ v ∈ V
2. u+ v = v + u
3. u+ (v + w) = (u+ v) + w
4. there is an element 0 in V such that 0 + u = u
5. there is an element −u in V such that u+ (−u) = 0
6. α.u ∈ V
7. (α + β).u = α.u+ β.u
8. α.(u+ v) = α.u+ α.v
9. (α β).u = α (β.u) = β (α.u)

10. 1.u = u

The elements of a vector space V are called vectors and the real numbers α, β, . . . are called
scalars. A set should satisfy all the 10 properties of the operations if it is to be called a vector
space. If any one of these 10 properties is not satisfied, the set can not be a vector space.

Example 0.2. (1) The set of all m × n matrices denoted by Mm×n, for each m,n ∈ N,
with usual matrix addition and scalar multiplication.

(2) The set Rn of all n− tuples (one may think of this as a special case of [2.] - the row
matrix) with usual addition of n-tuples and multiplication of an n−tuple by a number.

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

α (x1, x2, . . . , xn) = (αx1, α x2, . . . , α xn)

(3) The set of all real numbers R (special case of [2], when n = 1)
(4) The set Pn of all polynomials of order less than or equal n with usual polynomial

addition and multiplication of polynomial with numbers.

(a0 + a1t+ . . .+ ant
n) + (b0 + b1t+ . . .+ bnt

n) = (a0 + b0) + (a1 + b1)t+ . . .+ (an + bn)tn

α (a0 + a1t+ . . .+ ant
n) = α a0 + α a1t+ . . .+ α ant

n

(5) The set of all polynomials P , as an extended case of [4].
(6) The set of all real valued functions defined on [a, b] with

(f + g)(x) = f(x) + g(x), x ∈ [a, b]

(α f)(x) = α. f(x), x ∈ [a, b].

All these vector spaces are standard and are commonly used in the study of vector spaces.
Now we give some examples of sets which are not vector spaces.

Example 0.3. Let V be the set of all matrices of the form{[
a b
c 1

]
: a, b, c ∈ R

}



Deepesh K P

with usual addition and scalar multiplication. Here one can observe that V does not satisfy
the properties (1) and (6). To see that (1) is not satisfied,[

2 2
2 1

]
+

[
3 3
2 1

]
=

[
5 5
4 2

]
/∈ V

So, eventhough V satisfy the properties (2), (3), (7), (8), (9), and (10), it is not a vector space.

Following is the concept of a subspace of a vector space.

Definition 0.4. Let V be a vector space. A subset W of V is said to be a subspace if W itself
is a vector space under the induced operations.

This means that a vector space sitting inside a bigger vector space is called a subspace. Of
course, the operations in the subspace should be the same as that of the bigger space.

Example 0.5. Let W be the set of all matrices of the form{[
a 0
0 b

]
: a, b ∈ R

}
with addition and scalar multiplication as in M2×2. Obviously this collection is a subset of
M2×2. One can easily check that the properties (1) to (10) of a vector space are satisfied by
this W . Hence W is a subspace of V .

It is not always needed to check all the 10 properties for proving that a subset is a subspace.
One can observe that the properties [2], [3], [7], [8], [9] and [10] are heriditory properties (it
means that if the operation is the same, such a property of a bigger space carry over to a
smaller space). Also, the following result helps to say that, in a vector space, properties [4] and
[5] follows from other properties.

Theorem 0.6. Let V be a vector space. Then for each u ∈ V ,

0. u = 0,

the identity of V , and

−1. u = −u,
the inverse of u.

Proof. We have

0. u = (0 + 0). u = 0. u+ 0. u.

This shows that 0. u is the identity. That is 0. u = 0. Now

u+−1. u = 1. u+−1. u = (1 +−1). u = 0. u = 0,

which shows that −1. u is the inverse of u. �

Thus, in order to check a given subset W of V is a subspace or not, it is enough to check
properties [1] and [6] only, provided the operations in W are not altered.

Theorem 0.7. A subset W of a vector space V is a subspace if and only if

i. for every u, v ∈ W , u+ v ∈ W .
ii. for every α ∈ R and u ∈ W , α. u ∈ W .

Given a subset of a vector space, one can use Theorem 0.7 to check if it is a subspace or not.
One should note that this theorem can not be used if the operations given in the subset are
mentioned explicitely to be different from that of the vector space.
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Example 0.8. Let W be the set of all matrices of the form{[
a 0
b b

]
: a, b ∈ R

}
with addition and scalar multiplication as in M2×2. Obviously this collection is a subset of
M2×2 and the operations are the same. Now, for applying Theorem 0.7, take[

a1 0
b1 b1

]
+

[
a2 0
b2 b2

]
=

[
a1 + a2 0
b1 + b2 b1 + b2

]
∈ W

and

α

[
a1 0
b1 b1

]
=

[
α a1 0
α b1 α b1

]
∈ W

as the resultant obtained in each case is of the form of elements in W . Hence W is a subspace
of V .

We know that if vectors are added, the resultant is another vector (property (1)). Similarly
if a vector is multiplied with a scalar, the resultant is again a vector (property (6)). If we
combine these operations, we get a ‘linear combination’ of vectors.

Definition 0.9. Let V be a vector space, u1, u2, . . . , un ∈ V and α1, α2, . . . , αn ∈ R. Then the
vector

α1u1 + α2u2 + . . .+ αnun

is called a linear combination of the vectors u1, u2, . . . , un.

Example 0.10. Consider the vector space V =M2×2 and let

u =

[
1 0
5 −2

]
, v =

[
3 −5
7 1

]

Then w =

[
−7 15
−11 −7

]
is a linear combination of u and v since w = 2u+ (−3) v.

As we can see, the linear combination of vectors in V is again a vector in V . So clearly the
set of all linear combinations of vectors in V is a subset of V . Moreover, it is easy to show:

Theorem 0.11. Let V be a vector space V and u1, u2, . . . , un be vectors in V . Then the set of
all linear combinations of these vectors u1, u2, . . . , un is always a subspace of V .

There is a special name for this subspace.

Definition 0.12. Let V be a vector space and u1, u2, . . . , un be vectors in V . Then the set
of all linear combinations of these vectors u1, u2, . . . , un is called the linear span (or Span) of
u1, u2, . . . , un.

i.e., Span(u1, u2, . . . , un) = {α1u1 + α2u2 + . . .+ αnun : α1, α2, . . . , αn ∈ R}

Example 0.13. Consider the vector space V =M2×2 and let

u1 =

[
1 0
0 0

]
, u2 =

[
0 0
0 1

]

Then Span{u, v} =

{
α1

[
1 0
0 0

]
+ α2

[
0 0
0 1

]
: α1, α2 ∈ R

}
=

{[
α1 0
0 α2

]
: α1, α2 ∈ R

}
,

which is actually the set of all diagonal matrices of order 2× 2.

In vector spaces, there are some vectors which can span the whole vector space.
3
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Definition 0.14. We say that a vector space V is spanned by the vectors u1, u2, . . . , un in V
if each vector of V can be written as a linear combination of these vectors. In such a case, we
call u1, u2, . . . , un as a spanning set for V . Sometimes we say that u1, u2, . . . , un spans V .

Method to check if a given set is a spanning set or not: Suppose a vector space V is
given and we need to check if a set {u1, u2, . . . , un} spans V or not.

i. Take a general vector v of V .

ii. Write v as a linear combination of u1, u2, . . . , un

iii. Write the system of equations that results from step ii.

iv. Write the system in matrix form AX = b

v. Write the augmented matrix [Ab]

vi. Reduce [Ab] to its Echelon form.

vii. If ρ(A) = ρ(Ab) always, the system is solvable and hence given vectors will span V .

viii. If ρ(A) 6= ρ(Ab) in some situations, the system is not always solvable and hence the
given vectors do not span V .

Example 0.15. We show that the vectors

u1 =

[
1 0
0 0

]
, u2 =

[
0 1
0 0

]
u3 =

[
0 0
1 0

]
, u4 =

[
0 0
0 1

]
span the vector space M2×2. For this, take a general vector

v =

[
a b
c d

]
in M2×2. Then it is easy to see that

v = au1 + bu2 + cu3 + du4.

Thus every vector is a linear combination of u1, u2, u3, u4. Hence they span the vector space
M2×2.

Example 0.16. Consider the vectors (1, 1, 1), (1, 1, 2), (1, 2, 2) in R3. To show that this set
spans R3, take a general element (x, y, z) of R3. Writing

(x, y, z) = α1(1, 1, 1) + α2(1, 1, 2) + α3(1, 2, 2),

we get a system of equations:

α1 + α2 + α3 = x

α1 + α2 + 2α3 = y

α1 + 2α2 + 2α3 = z

The corresponding matrix form is1 1 1
1 1 2
1 2 2

α1

α2

α3

 =

xy
z


The augmented matrix of this system is

[Ab] =

1 1 1 x
1 1 2 y
1 2 2 z


4
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An Echelon form of the augmented matrix is1 1 1 x
0 1 2 z − x
0 0 1 y − x


From this it is clear that ρ(Ab) = ρ(A) = 3 whatever be (x, y, z). Hence the system is always
consistent. Hence the given three vectors span R3.

It should also be noted that there may be plenty of spanning sets for a vector space.

Now we discuss about certain relations between vectors of a vector space.

Definition 0.17. We say that the vectors u1, u2, . . . , un are linearly dependent if there are
scalars α1, α2, . . . , αn such that

α1u1 + α2u2 + . . .+ αnun = 0

with atleast one scalar αi 6= 0.

This definition says that there must be a ‘non-trivial’ linear relationship between the vectors
u1, u2, . . . , un if they are to be linearly dependent. It also implies that one of the vectors can be
written as a linear combination of the other vectors (see problem 43). It happens if and only if
one of the vectors is in the span of the other vectors (see problem 44).

Example 0.18. We can see that in M2×2, the vectors

u1 =

[
1 3
2 4

]
, u2 =

[
2 6
4 8

]
are linearly dependent since [

2 6
4 8

]
= 2

[
1 3
2 4

]
,

or 1.u1 + (−2).u2 = 0 holds here and α1 = 1 and α2 = −2 are both non zero here.

If a set of vectors fails to be linearly dependent, there will not be such a ‘non-trivial’ linear
relation between them. In such a case, we call the vectors as linearly independent vectors.

Definition 0.19. A set of vectors u1, u2, . . . , un in a vector space V is said to be linearly
independent if whenever α1u1 + α2u2 + . . . + αnun = 0 happens, then each of the scalars α1 =
0, α2 = 0, . . . , αn = 0. i.e.,

vectors u1, u2, . . . , un are independent if and only if

α1u1 + α2u2 + . . .+ αnun = 0 ⇒ α1 = 0, α2 = 0, . . . , αn = 0

Following is the definition of linear independence pertaining to an infinite set of vectors.

Definition 0.20. An infinite set {u1, u2, . . .} of vectors is linearly independent if any collection
of finitely many elements taken from the set is always linearly independent.

Example 0.21. Consider the vectors

u1 =

[
2 0
0 1

]
, u2 =

[
1 2
0 0

]
, u3 =

[
0 1
2 0

]
inM2×2. Writing their linear combination equal to zero, i.e., α1u1 +α2u2 +α3u3 = 0, we get a
system of equations 2α1 + α2 = 0; 2α2 + α3 = 0; 2α3 = 0; α1 = 0. Solving these, we get
each of the scalars equal to 0. Hence the three vectors are linearly independent.
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There are easy methods to check linear independence in the case of some special vector spaces.
The key point used in these methods is that the rank of a matrix is equal to the number of
linearly independent rows of the matrix. Also we sometimes use the fact that, for an n × n
square matrix, the rank is equal to n if and only if determinant is equal to zero.

Methods to check linear independence of vectors in the case of P ,M2×2 or Rn:

• Form a matrix using the coefficients/coordinates of the given vectors

• Find the rank of this matrix using Echelon form (or any other method).

• If the rank is equal to the number of given vectors, the given vectors are independent;
and if not, then they are dependent.

(If the matrix thus obtained is a square matrix, one can find the determinant. Now
if the determinant is non zero, the vectors should be independent).

One can do it staight from the definition. Write a linear combination of the vectors, put it equal
to zero. Check if all scalars are becoming zero (independent) or not (dependent). (Eventhough
this is a theoretically approved method for all vector spaces, the previous method will be easier
in the case of P ,M2×2 or Rn under usual operations.)

Example 0.22. Consider the vectors (1, 3, 4), (2, 4, 6), (1, 1, 5) in R3. To check if linearly inde-
pendent, form the matrix

A =

1 3 4
2 4 6
1 1 5


Now find the Echelon form, say 1 3 4

0 1 1
0 0 3


which shows that ρ(A) = 3. Hence the three vectors are linearly independent.

[Or else, since A is a square matrix, we find the determinant |A| = −6 6= 0. Hence ρ(A) = 3
and hence the three vectors are linearly independent].

Example 0.23. We show that the vectors

u1 =

[
1 2
1 1

]
, u2 =

[
2 1
1 1

]
u3 =

[
1 1
1 2

]
are linearly independent in M2×2. For this, we form the matrix

A =

1 2 1 1
2 1 1 1
1 1 1 2


in M2×2. It Echelon form is of the form1 2 1 1

0 1 0 −1
0 0 1 4


Hence ρ(A) = 3. Thus the three vectors are linearly independent.

6
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Example 0.24. Consider the vectors 1 + 3t + 4t2, 2 + 4t + 6t2, 1 + t + 2t2 in P2. To check if
linearly independent, form the matrix

A =

1 3 4
2 4 6
1 1 2


Now find the Echelon form, say 1 3 4

0 1 1
0 0 0


which shows that ρ(A) = 2 6= 3. Hence the three vectors are linearly dependent.

[Or else, since A is a square matrix, we find the determinant |A| = 0. Hence ρ(A) 6= 3 and
hence the three vectors are linearly dependent].

There are some sets of vectors which can span the total vector space and at the same time,
can be linearly independent. Such sets need special attention.

Definition 0.25. A set of vectors in a vector space is called a basis for the vector space if the
set is linearly independent and it spans the vector space.

Example 0.26. Consider the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in R3. Clearly it is linearly
independent, since its matrix

A =

1 0 0
0 1 0
0 0 1


has rank 2. Now it spans R3 since any vector (a, b, c) can be written as the linear combination

(a, b, c) = α1(1, 0, 0) + α2(0, 1, 0) + α3(0, 0, 1)

with α1 = a, α2 = b, α3 = c. Thus it is a basis for R3.

Example 0.27. One can show that the set of vectors {u1, u2, u3}, where

u1 =

[
1 2
1 1

]
, u2 =

[
2 1
1 1

]
u3 =

[
1 1
1 2

]
does not form a basis for M2×2.

As we have seen in Example 0.23, they are linearly independent in M2×2. But it can be
shown that u1, u2, u3 do not span all vectors of M2×2. Thus it is not a basis for M2×2.

Example 0.28. Consider the vectors 1 + 3t+ 4t2, 2 + 4t+ 6t2, 1 + t+ 2t2 in P2. This collection
is not a basis for P2 since they are not linearly independent as seen in Example 0.24.

Note: Some vector spaces have some special simple bases as in the following. Such bases as
reffered as “Standard bases”.

• The standard basis for R3 is {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
• The standard basis for Rn is {(1, 0, 0, . . . , 0, 0), (0, 1, 0, . . . , 0, 0), . . . , (0, 0, 0, . . . , 0, 1)}.
• The standard basis for Pn is {1, x, x2, x3, . . . , xn}
• The standard basis for P is {1, x, x2, x3, . . .}
• The standard basis for M2×3 is{[

1 0 0
0 0 0

]
,

[
0 1 0
0 0 0

] [
0 0 1
0 0 0

] [
0 0 0
1 0 0

]
,

[
0 0 0
0 1 0

] [
0 0 0
0 0 1

]}
There may be plenty of bases for the same vector space.
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Example 0.29. We have seen in Example 0.26 that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for
R3. Now, the set {(1, 1, 1), (0, 1, 1), (0, 0, 1)} is also linearly independent and spans R3. Hence
this set is also a basis for R3.

The following is an important result about the number of elements in a basis.

Theorem 0.30. Any two bases for the same vector space will have equal number of elements.

This result says that even though the elements in bases of the same vector space may be
different, the number of elements in any basis should be equal.

Example 0.31. We have seen in Example 0.26 that {(1, 0, 0), (0, 1, 0), (0, 0, 1)} is a basis for
R3. So any other basis of R3 should also contain 3 elements in it. Due to this reason, any given
subset of R3 which contains 2 or 4 elements can never be a basis for R3. But it should be noted
that a 3 elemented subset in R3 may or may not be its basis of R3, as in this case we must
check linear independence and spanning properties of the given set.

In a similar way, we can say that the set {1 + t2, 2 + 4t− t2, 3− t+ 3t2} can never be a basis
for P3 since any basis of P3 must contain 4 elements.

There is a special name for the number of elements in a basis.

Definition 0.32. The cardinality (number of elements) of a basis for a vector space is called
the dimension of the vector space. It is denoted by dim(V ).

In view of the note after Example 0.28, we have:

• dim(R3) = 3
• dim(Rn) = n
• dim(Pn) = n+ 1
• dim(Mm×n) = mn
• P is an infinite dimensional vector space.

Eventhough a basis needs to be linearly independent and span the vector space, if we are sure
about the dimension of the vector space, then the following theorem eases our work greatly.

Theorem 0.33. Suppose dim(V ) = n. Then a set of n vectors in V is a basis if and only if it
is linearly independent.

Note: So, when we know the dimension of the vector space is n, then to check whether a given
subset is a basis or not, it is very easy.

step: i. Check if the given set has n vectors or not.

(If it does not have n vectors, then the given collection can never be a basis for the
vector space as by theorem 0.30, every basis of the vector space whose dimension is n,
must have n elements).

step: ii. If there are n vectors, test if the given n vectors are linearly independent or not.

(If it is not linearly independent, then it can never be a basis for the vector space because
of Theorem 0.33).

step: iii. If both steps i and ii have positive answers, the set is a basis. Else, it is not.

Example 0.34. Consider the subset {u1, u2, u3}, where

u1 =

[
1 2
1 1

]
, u2 =

[
2 1
1 1

]
u3 =

[
1 1
1 2

]
in M2×2.

8
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We know that dim(M2×2) = 4. Hence the given set can not be a basis as it contains only 3
elements.

Example 0.35. Consider the vectors (1, 0, 0), (0, 1, 1), (1, 1, 1) in R3. It is not linearly inde-
pendent since its corresponding matrix

A =

1 0 0
0 1 1
1 1 1


has rank 2. Hence it is not a basis for R3.

Example 0.36. Consider the vectors 1+3t+4t2, 2+4t+6t2, 1+t+t2 in P2. Since dim(P2) = 3,
it is enough to check the linear independence of these three vectors. On checking one can easily
see that this set is linearly independent and hence by Theorem 0.30 it is a basis for P2.

We know that a spanning set, by definition, spans the total vector space. Hence each vector
can be written as a linear combination of the spanning set. But the representation may not be
in a unique way:

Example 0.37. Consider the vectors (1, 0), (0, 1), (1, 1) in R2. It can be seen that this set
spans R2. Also each element of R2 can be represented in many ways using these three vectors.
For example,

(2, 3) = 2(1, 0) + 3(0, 1) + 0(1, 1)

(2, 3) = 0(1, 0) + 1(0, 1) + 2(1, 1)

But one can see that the set is not linearly independent. In otherwords it is a spanning set
which is not linearly independent.

When the spanning set is also linearly independent, it becomes a basis. There is ‘uniqueness’
when we span a vector using a basis. In the following, by an ordered basis, we mean a basis in
which the order of the vectors has importance (like an ordered pair).

Theorem 0.38. Let B = {u1, u2, . . . , un} be an ordered basis for a vector space V . Then each
element of V can be written uniquely as a linear combination of elements of B.

Hence, given a basis B = {u1, u2, . . . , un} and a vector v in V , then we can write

v = α1u1 + α2u2 + . . .+ αnun,

and these scalars α1, α2, . . . , αn will be unique.

Definition 0.39. Let V be a vector space and B = {u1, u2, . . . , un} be an ordered basis for
V . Then the coordinates of a vector v with respect to B (denoted by [v]B) is the column vector
[α1, α2, . . . , αn]T , where α1, α2, . . . , αn are the unique scalars such that

v = α1u1 + α2u2 + . . .+ αnun.

Example 0.40. Consider the set B = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} in R3. It is a basis for R3.
Now we shall find the coordinate matrix of (2, 3,−1) with respect to B. Writting

(2, 3,−1) = α1(1, 0, 0) + α2(1, 1, 0) + α3(1, 1, 1),

we get α1 = −1, α2 = 4, a3 = −1. Hence the coordinate matrix [(2, 3,−1)]B = [−1 4 − 1]T .

Note: When we take different bases B1 and B2, the coordinates of the same vector can be
different with respect to them! (i.e., [v]B1 6= [v]B2).

9
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Now, if we take two different bases for a vector space, we can find the coordinate vectors of
each element of one basis with respect to the other basis. Using these column vectors, one can
form a new matrix.

Definition 0.41. Suppose V be a vector space and B1 = {u1, u2, . . . , un} and B2 = {v1, v2, . . . , vn}
be two ordered bases for V . Form an n×n matrix by taking [v1]B1 , [v2]B1 , . . . , [vn]B1 as columns.
The matrix thus obtained is called the transition matrix corresponding to the change of basis
B1 → B2 and is denoted by [T ]B1→B2.

When we consider V with B1 as its basis, every element has a representation and coordinate
matrix with respect to this basis. Suppose suddently one wants to study V with a second basis
B2. Then he has to change all the representations and coordinate vectors as everything changes
when the basis changes. But with the help of the transition matrix, one can easily get the
coordinate matrix of elements with respect to B2 using the coordinate matrix of elements with
respect to B1. One can show that

[v]B2 = [T ]B1→B2 [v]B1

Also one can go back to the settings of V with B1 by using the inverse of the transition matrix:

[v]B1 = [T ]−1B1→B2 [v]B2 .

This is why transition matrix corresponds to “change of basis”.

Example 0.42. The sets B1 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} and B2 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}
are bases for R3. representing each element of B2 with respect to B1, we get

[(1, 0, 0)]B1 = [1 0 0]T

[(0, 1, 0)]B1 = [−1 1 0]T

[(0, 0, 1)]B1 = [0 − 1 1]T

Hence the transition matrix corresponding to the change of basis B1 → B2 is given by

[T ]B1→B2 =

1 −1 0
0 1 −1
0 0 1



Inner Product Spaces

Suppose that V is a vector space over R. We have seen that there are two operations defined
in connection with a vector space.

Now we talk about a new operation namely, ‘taking the inner product of two vectors’ on a
vector space V . It helps to introduce the concept of angle and orthogonality (or perpendicularity)
in the vector space settings. It is also an extension of the concept of dot product of 3-dimensional
real vectors ( considering ai+ bj + ck) as (a, b, c) ) to a general vector space.

Definition 0.43. A vector space V is said to be an inner product space if there is defined
a function 〈., .〉 : V × V → R satisfying the following properties:

1. 〈u, u〉 ≥ 0 for all u ∈ V
2. 〈u, u〉 = 0 if and only if u = 0
3. 〈u+ v, w〉 = 〈u,w〉+ 〈v, w〉 for all u, v, w ∈ V .
4. 〈αu, v〉 = α〈u, v〉 for all u, v ∈ V and α ∈ K.
5. 〈v, u〉 = 〈u, v〉 for all u, v ∈ V .

10
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The above defined function 〈., .〉 on V is called an inner product on V . Note that on
all vector spaces, we may not be able to define an inner product. The properties 1 and 2
are combinedly called positive definiteness and the properties 3 and 4 together are called
linearity properties. Property 5 is called symmetry.

We use the notations X, Y, Z, . . . for inner product spaces (instead of U, V,W, . . .).

Example 0.44. 1. Take X = R and define

〈x, y〉 = xy,

the usual multiplication of real numbers.
2. Take X = R3 and define

〈(a1, b1, c1), (a2, b2, c2)〉 = a1a2 + b1b2 + c1c2

(the usual ‘dot product’ of real 3-dimensional vectors).
3. Take X = Rn and define

〈(x1, x2, . . . , xn), (y1, y2, . . . , yn)〉 =
n∑
j=1

xjyj

5. Take X = Pn[a, b] and define

〈p(x), q(x)〉 =

∫ b

a

p(x)q(x)dx

Here Pn[a, b] denotes the set of all real polynomials of degree less than or equal to n whose
domain are considered as [a, b].

Note that the inner product on an inner product space gives rise to a positive quantity

‖x‖ =
√
〈x, x〉

which is called the norm of the vector x in X. When the norm of a vector is 1, we say that
the vector is a normalized vector.

We know that in the case of dot product of real 3-dimensional vectors,

a.b = |a||b|cosθ,
where θ is the angle between the vectors a and b. Also, we say that two vectors a and b
are perpendicular if the angle between them is π

2
, i.e, if a.b = 0. Similar to this we define

orthogonality of vectors in inner product space.

Definition 0.45. We say that x, y ∈ X are orthogonal to each other (written as x⊥y) if

〈x, y〉 = 0.

We say that a set of vectors {x1, x2, . . . , xn} in X is an orthogonal set if each pair of distict
vectors of the set is orthogonal,i.e.,

〈xi, xj〉 = 0 whenever i 6= j.

Example 0.46. The vectors (1, 0, 1) and (1, 0,−1) are orthogonal in R3.

Definition 0.47. We say that a set of vectors {x1, x2, . . . , xn} in X is an orthonormal set
if it is an orthogonal set and the norm of each element of the set is 1. That is

〈xi, xj〉 = 0 whenever i 6= j and 〈xi, xi〉 = 1 for all i

.

Example 0.48. The vectors (1, 0, 1) and (1, 0,−1) are orthogonal in C3 but not orthonormal;
same is the case with sin x and cos x in C[−1, 1]. The set {(1, 0, 0, . . .), (0, 1, 0, . . .), (0, 0, 1, . . .), . . .}
is an orthonormal set in `2.

11
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Note that if {x1, x2, . . .} is orthogonal in X, then { x1
‖x1‖ ,

x2
‖x2‖ , . . .} will be an orthonormal set

in X (use ‖αx‖ = |α|‖x‖ and 1
‖x‖ is a scalar, to show this).

Recall that two vectors in 3-dimensional space is said to be perpendicular if the dot product of
the vectors is zero. This happens if and only if the angle between them is π/2. Corresponding
to the concept of angle between two vectors in 3-dimensional space, one may define the angle
between two vectors in an inner product space as

cos θ =
〈x, y〉√

〈x, x〉
√
〈y, y〉

Theorem 0.49. Suppose X is an inner product space and x, y are orthogonal in X. Then
these vectors satisfy the so called Pythagorus Theorem:

‖x+ y‖2 = ‖x‖2 + ‖y‖2

Proof: Start with ‖x+ y‖2 = 〈x+ y, x+ y〉 and use 〈x, y〉 = 〈y, x〉 = 0 on expansion.

Problem: Verify Pythagorus theorem for x = (2, 1, 0) and y = (3,−6, 5) in R3.

This theorem becomes base2 + altitude2 = hypotenus2, when the vectors are perpendicular in
R2

Recall that in the 3 dimensional case,

〈x, y〉√
〈x, x〉

√
〈y, y〉

= cos θ

and the modulus of cos θ is less than or equal to 1, resulting in |〈x, y〉| ≤ ‖x‖ ‖y‖, which is true
always in any inner product space.

Theorem 0.50. Suppose X is an inner product space and x, y ∈ X. Then these vectors satisfy
the so called Cauchy-Schwartz Inequality:

|〈x, y〉| ≤ ‖x‖ ‖y‖

Problem: Verify Schwartz inequality for x = (2, 1, 0) and y = (1, 3,−1) in R3.

Theorem 0.51. Every orthogonal set in an inner product space is linearly independent.

Proof: Let {u1, u2, . . . , un} be a linearly independent set in an inner product space. Put
c1u1 + c2u2 + . . . + cnun = 0, where ci are scalars. Taking inner product with ui on both sides
and and using 〈ui, uj〉 = 0 and 〈ui, uj〉 6= 0, one can show that ci = 0. Do this for i = 1, 2, . . . , n.

Show that {(1, 2), (1, 3)} is a linearly independent set in the inner product space R2, whereas
they are not orthogonal.

The following result shows that from every linearly independent set we can construct an
orthonormal set through a process called Gramm-Schmidt orthonormalization theorem.

Theorem 0.52. Let {y1, y2, . . .} be a linearly independent set in X. Then by Gramm-
Schmidt orthonormalization process:

u1 = y1;

u2 = y2 −
〈y2, u1〉
‖u1‖2

u1;

u3 = y3 −
〈y3, u1〉
‖u1‖2

u1 −
〈y3, u2〉
‖u2‖2

u2;

... . . . ...

un = yn −
n−1∑
i=1

〈yn, ui〉
‖ui‖2

ui;

12
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... . . . ...

one can create the set {u1, u2, u3, . . .}, which will be an orthogonal set and the set { u1
‖u1‖ ,

u2
‖u2‖ ,

u3
‖u3‖ , . . .}

will be an orthonormal set in X.

One can always create orthonormal sets in a nonzero inner product space by taking linearly
independent sets and applying Gramm-Schmidt orthonormalization.

orthogonal basis and orthonormal basis.
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1. Problems

(1) Show that the set of all m × n matrices over R with usual matrix addition and scalar
multiplication of a matrix with a real number is a vector space.

(2) Show that the set of all n × n diagonal matrices with usual matrix addition and scalar
multiplication of a matrix with a real number is a vector space.

(3) Show that the set of all 3× 3 matrices whose second and third rows are zeros is a vector
space under the usual matrix addition and scalar multiplication.

(4) Show that the set of all n × n non-singular matrices is not a vector space under usual
matrix addition and scalar multiplication of a matrix with a real number.

(5) Show that the set of all real polynomials of degree less than n is a vector space under the
usual addition of polynomials and the multiplication of a polynomial with a real number.

(6) Show that the set of all real polynomials is a vector space under the usual addition of
polynomials and the multiplication of a polynomial with a real number.

(7) Show that the set of all real valued functions on [a, b] is a vector space under the opera-
tions:

(f + g)(x) = f(x) + g(x), x ∈ [a, b]

(α.f)(x) = αf(x), x ∈ [a, b].

(8) Show that the set Rn of all n−tuples forms a vector space under the operations

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn)

and α(x1, x2, . . . , xn) = (αx1, α, x2, . . . , αxn).

(9) Show that the set of all ordered triplets of the form (x, 0, z), x, y ∈ R is a vector
space under the usual addition (x1, 0, z1) + (x2, 0, z2) = (x1 + x2, 0, z1 + z2) and scalar
multiplication α(x1, 0, z1) = (αx1, 0, αz1).

(10) On V = R3, define (a1, b1, c1)+(a2, b2, c2) = (a1+a2, b1+2b2, c1+3c2) and α(a1, b1, c1) =
(αa1, 2αb1, 3αc1). Is V a vector space under these operations?

(11) Is V = R2 with the operations (x1, y1)+(x2, y2) = (x1+x2, y1) and α(x1, y1) = (αx1, αy1)
a vector space?

(12) Is V = R3 with the operations (x1, y1, z1) + (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2) and
α(x1, y1, z1) = (αx1, y1, z1) a vector space?

(13) Test if V = R is a vector space with vector addition defined as u−v and the usual scalar
multiplication.

(14) Show that in any vector space V ,
(i) −(−u) = u

(ii) cu = 0 if and only if c = 0 or u = O or both.
(iii) c.0 = 0.

(15) Show that a vector space has only one identity vector.
(16) Is V = {at2 + bt+ c : b = 2a+ 3} a subspace of P2(t)?
(17) Is

W =

{[
a b
c d

]
: a, b, c, d ∈ R & b = c

}
a subspace of M2×2?

(18) Is

W =

{[
a b

a+ b b

]
: a, b ∈ R

}
a subspace of M2×2?

(19) Show that the set of all vectors in R3 satisfying x1 − 2x2 + 4x3 = 0 is a subspace of R3.
(20) Show that the set of all n× n symmetric matrices is a subspace of Mn×n.
(21) Show that the set of all 2 × 3 matrices with all entries non negative, is not a subspace

of M2×3.
14
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(22) Check if the set of all 3× 3 skew-symmetric matrices is a subspace of M3×3.
(23) Check if the set of all 3× 3 singular matrices is a subspace of M3×3.
(24) Check if the set of all 3× 3 non-singular matrices is a subspace of M3×3.
(25) Check if the set of all polynomials whose degree less than or equal to 3 and having positive

coefficients is a subspace of P3.
(26) Show that the set of all functions of the form a cos x+b sin x, with any constants a, b ∈ R

is a subspace of the vector space given in problem (7).
(27) Check if the set of all 3−tuples of the form (a, a− b, a+ 3b) : a, b ∈ R, is a subspace of

R3.
(28) Check if the set of all 3−tuples of the form (a, b, c) : a = b, is a subspace of R3.
(29) Check if the set of all 4−tuples of the form (a, b, c, d) : a2 = b2, is a subspace of R4.
(30) Check if the set of all 4−tuples of the form (a, b, c, d) : a + b = c + d, is a subspace of

R4.
(31) Check if the set of all 3−tuples of the form (a, b, a, b), is a subspace of R3.
(32) Check if the set of all 3−tuples of the form (a, b, c) : 4a − 3b + c = 5, is a subspace of

R3.
(33) Check if the set of all 3−tuples of the form (a, b, c, d) : a3 = b3, is a subspace of R3.
(34) Check if the set of all matrices of the form a a subspace of M2×2.
(35) Check if the set {(a, b, 1) : a, b ∈ R} is a subspace of R3.
(36) Check if the set {(a, b, 0) : a, b ∈ R} is a subspace of R3.
(37) Check if the set {(a, b, c) : a ≥ 0, b ≥ 0, c ≥ 0} is a subspace of R3.
(38) Check if the set {(x, y, z) : z = y + x} is a subspace of R3.
(39) Check if the set {(a, b, c) : b = a− c} is a subspace of R3.
(40) Check if the set {(a, b, c) : a = 0, c = 0} is a subspace of R3.
(41) Check if the set {(a, b, c) : b = 3} is a subspace of R3.
(42) Check if the set {(x, y) ∈ R2 : 3x+ 4y = 0} is a subspace of R3.
(43) Show that if a set {u1, u2, . . . , un} is linearly dependent if and only if one of the vectors

is a linear combination of the remaining vectors.
(44) Show that if a set {u1, u2, . . . , un} is linearly dependent if and only if one of the vectors

is in the span of the remaining vectors.
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