POISSON INTEGRAL FORMULA

It comes from the Cauchys integral formula. So we see it first. It basically says that the function (analytic) values inside a curve can be computed using the values of the function on the boundary.

THEOREM 0.1. Let f be a function analytic inside and on a simple closed curve C, taken in the counter clockwise sense. If z_{0} is any point interior to C, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z_{0}} d s
$$

Proof. For $\rho>0$ sufficiently small, take C_{ρ} to the a circle with center at z_{0} and radius ρ. Then by the Principle of deformation of paths,

$$
\frac{1}{2 \pi i} \int_{C} \frac{f(s)}{s-z_{0}} d s=\frac{1}{2 \pi i} \int_{C_{\rho}} \frac{f(s)}{s-z_{0}} d s
$$

Now

$$
\begin{aligned}
\int_{C_{\rho}} \frac{f(s)}{s-z_{0}} d s & =\int_{C_{\rho}} \frac{f(s)-f\left(z_{0}\right)+f\left(z_{0}\right)}{s-z_{0}} d s \\
& =f\left(z_{0}\right) \int_{C_{\rho}} \frac{1}{s-z_{0}} d s+\int_{C_{\rho}} \frac{f(s)-f\left(z_{0}\right)}{s-z_{0}} d s \\
& =f\left(z_{0}\right) \cdot 2 \pi i+\int_{C_{\rho}} \frac{f(s)-f\left(z_{0}\right)}{s-z_{0}} d s
\end{aligned}
$$

If we show that the second integral is zero, the proof will get over. To show it, take any $\epsilon>0$. Since f is continuous at z_{0}, there exists a $\delta>0$ such that $\left|f(s)-f\left(z_{0}\right)\right|<\varepsilon$ whenever $\left|s-z_{0}\right|<\delta$.

We choose our $\rho<\delta$. Hence for each s on C_{ρ}, we have $\left|f(s)-f\left(z_{0}\right)\right|<\varepsilon$. Hence

$$
\left|\int_{C_{\rho}} \frac{f(s)-f\left(z_{0}\right)}{s-z_{0}} d s\right| \leq \int_{C_{\rho}} \frac{\left|f(s)-f\left(z_{0}\right)\right|}{\left|s-z_{0}\right|} d s \leq \varepsilon \int_{C_{\rho}} \frac{1}{\rho} d s=2 \pi \varepsilon
$$

Since it is true for every $\varepsilon>0$, we get

$$
\left|\int_{C} \frac{f(s)}{s-z_{0}} d s-f\left(z_{0}\right) \cdot 2 \pi i\right|=0
$$

which proves the Cauchy's integral formula.

Now we move onto proving the Poisson integral formula. It gives the values of the real part of an analytic function inside a circle, using its values on the circle (multiplied by a kernal). It helps in solving many Dirichlet problems.

THEOREM 0.2. Suppose $f(z)$ is a function analytic in a domain containing the circle C_{0} with center at origin and radius $r_{0}>0$. Let the real part of $f(z)$ be $u(r, \theta)$ in polar cordinates. For $r<r_{0}$, let

$$
P\left(r_{0}, r, \phi-\theta\right)=\frac{r_{0}^{2}-r^{2}}{r_{0}^{2}+r^{2}-2 r_{0} r \cos (\phi-\theta)},
$$

which is called the Poisson Kernal. Then

$$
u(r, \theta)=\frac{1}{2 \pi i} \int_{0}^{2 \pi} P\left(r_{0}, r, \phi-\theta\right) u\left(r_{0}, \phi\right) d \phi, \quad r<r_{0}
$$

Proof. Suppose $f(z)=u(r, \theta)+i v(r, \theta)$. We know that for each z inside C_{0} and z_{1} outside C_{0}, by Cauchy's theorem and Cauchy's integral formula,

$$
\int_{C_{0}} \frac{f(s)}{s-z_{1}} d s=0 \quad \text { and } \quad \int_{C_{0}} \frac{f(s)}{s-z} d s=2 \pi i \cdot f(z)
$$

Adding the two we get

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{0}} f(s)\left(\frac{1}{s-z}-\frac{1}{s-z_{1}}\right) d s
$$

We choose z_{1} in a particular way.
Given a point z inside a circle C, the inverse of z with respect to C is defined as the point z_{1} lying on the same ray passing through z, which satisfy the condition $\left|z_{1}\right||z|=r^{2}$, where r is the radius of C. It is easy to observe that the inverse z_{1} will be lying outside C because $\left|z_{1}\right|=\frac{r^{2}}{|z|}>r$, since $|z|<r$. For a z inside C_{0}, we choose z_{1} to be the inverse of z to get the Poisson formula. With this z_{1}, we can write

$$
f(z)=\frac{1}{2 \pi i} \int_{C_{0}} f(s)\left(\frac{1}{s-z}-\frac{1}{s-z_{1}}\right) d s
$$

Here since s runs over C_{0}, we can write $s=r_{0} e^{i \phi}, 0 \leq \phi<2 \pi$. Then $d s=r_{0} i e^{i \phi} d \phi=$ is $d \phi$. Substituting this in the integral,

$$
f(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{s}{s-z}-\frac{s}{s-z_{1}}\right) f(s) d \phi
$$

Since z_{1} is also lying on the same ray containing z, and $\left|z_{1}\right|=\frac{r_{0}{ }^{2}}{r}$, we can write $z_{1}=\frac{r_{0}{ }^{2}}{r} e^{i \theta}=\frac{r_{0}{ }^{2}}{r e^{-i \theta}}=\frac{s \bar{s}}{\bar{z}}$. Hence

$$
\begin{aligned}
f(z) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{s}{s-z}-\frac{s}{s-\frac{s \bar{z}}{\bar{z}}}\right) f(s) d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{s}{s-z}-\frac{\bar{z}}{\bar{s}-\bar{z}}\right) f(s) d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{s \bar{s}-z \bar{z}}{|s-z|^{2}}\right) f(s) d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{r_{0}{ }^{2}-r^{2}}{|s-z|^{2}}\right) f(s) d \phi .
\end{aligned}
$$

That is,

$$
f\left(r e^{i \theta}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{r_{0}^{2}-r^{2}}{|s-z|^{2}}\right) f\left(r_{0} e^{i \phi}\right) d \phi, \quad \text { where } 0<r<r_{0}
$$

This can be treated as the poisson integral formula in complex form. Using the triangle relation $a^{2}=b_{2}+c^{2}-2 a b \cos A$ applied to the triangle formed by $0, s$ and z, we get $|s-z|=r_{0}{ }^{2}+r^{2}-2 r_{0} r \cos (\theta-\phi)$. Substituting this

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\left(r_{0}^{2}-r^{2}\right) f\left(r_{0} e^{i \phi}\right)}{r_{0}^{2}+r^{2}-2 r_{0} r \cos (\theta-\phi)}\right) d \phi, \quad \text { where } 0<r<r_{0} \\
u(r, \theta)+i v(r, \theta) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\left(r_{0}^{2}-r^{2}\right)\left(u\left(r_{0}, \phi\right)+i v\left(r_{0}, \phi\right)\right)}{r_{0}^{2}+r^{2}-2 r_{0} r \cos (\theta-\phi)}\right) d \phi, \quad \text { where } 0<r<r_{0}
\end{aligned}
$$

Collecting the real part and calling $P\left(r_{0}, r, \phi-\theta\right)=\frac{r_{0}{ }^{2}-r^{2}}{r_{0}+r^{2}-2 r_{0} r \cos (\phi-\theta)}$, we get the Poisson integral formula as

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(r_{0}, r, \phi-\theta\right) u\left(r_{0}, \phi\right) d \phi, \quad \text { where } 0<r<r_{0}
$$

which is applicable to all harmonic functions $u(r, \theta)$, obtaining its values incide the circle $\left(r<r_{0}\right)$ in terms of the values of $u\left(r_{0}, \phi\right)$ with the help of the kernal.

COROLLARY 0.3. Suppose the circle C_{0} is the unit circle, then the Poisson integral formula becomes

$$
\begin{aligned}
f\left(r e^{i \theta}\right) & =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\frac{\left(1-r^{2}\right) f\left(e^{i \phi}\right)}{1+r^{2}-2 r \cos (\theta-\phi)}\right) d \phi \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} P(r, \phi-\theta) f\left(e^{i \phi}\right) d \phi, \quad \text { where } 0<r<r_{0}
\end{aligned}
$$

Proof. Take $r_{0}=1$ in Poisson integral formula.
COROLLARY 0.4. $\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(r_{0}, r, \phi-\theta\right) d \phi=1$
Proof. Take $f=1$ in Poisson integral formula.

