
POISSON INTEGRAL FORMULA

It comes from the Cauchys integral formula. So we see it first. It basically says

that the function (analytic) values inside a curve can be computed using the values of

the function on the boundary.

THEOREM 0.1. Let f be a function analytic inside and on a simple closed curve C,

taken in the counter clockwise sense. If z0 is any point interior to C, then

f(z0) =
1

2πi

∫
C

f(s)

s− z0
ds.

Proof. For ρ > 0 sufficiently small, take Cρ to the a circle with center at z0 and radius

ρ. Then by the Principle of deformation of paths,

1

2πi

∫
C

f(s)

s− z0
ds =

1

2πi

∫
Cρ

f(s)

s− z0
ds

Now ∫
Cρ

f(s)

s− z0
ds =

∫
Cρ

f(s)− f(z0) + f(z0)

s− z0
ds

= f(z0)

∫
Cρ

1

s− z0
ds+

∫
Cρ

f(s)− f(z0)

s− z0
ds

= f(z0) · 2π i+

∫
Cρ

f(s)− f(z0)

s− z0
ds

If we show that the second integral is zero, the proof will get over. To show it, take

any ϵ > 0. Since f is continuous at z0, there exists a δ > 0 such that |f(s)− f(z0)| < ε

whenever |s− z0| < δ.

We choose our ρ < δ. Hence for each s on Cρ, we have |f(s)− f(z0)| < ε. Hence∣∣ ∫
Cρ

f(s)− f(z0)

s− z0
ds
∣∣ ≤ ∫

Cρ

|f(s)− f(z0)|
|s− z0|

ds ≤ ε

∫
Cρ

1

ρ
ds = 2πε.

Since it is true for every ε > 0, we get∣∣ ∫
C

f(s)

s− z0
ds− f(z0) · 2πi

∣∣ = 0,

which proves the Cauchy’s integral formula. □
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Now we move onto proving the Poisson integral formula. It gives the values of the

real part of an analytic function inside a circle, using its values on the circle (multiplied

by a kernal). It helps in solving many Dirichlet problems.

THEOREM 0.2. Suppose f(z) is a function analytic in a domain containing the

circle C0 with center at origin and radius r0 > 0. Let the real part of f(z) be u(r, θ) in

polar cordinates. For r < r0, let

P (r0, r, ϕ− θ) =
r0

2 − r2

r02 + r2 − 2r0r cos(ϕ− θ)
,

which is called the Poisson Kernal. Then

u(r, θ) =
1

2πi

∫ 2π

0

P (r0, r, ϕ− θ)u(r0, ϕ)dϕ, r < r0.

Proof. Suppose f(z) = u(r, θ) + i v(r, θ). We know that for each z inside C0 and z1

outside C0, by Cauchy’s theorem and Cauchy’s integral formula,∫
C0

f(s)

s− z1
ds = 0 and

∫
C0

f(s)

s− z
ds = 2π i · f(z).

Adding the two we get

f(z) =
1

2πi

∫
C0

f(s)
( 1

s− z
− 1

s− z1

)
ds

We choose z1 in a particular way.

Given a point z inside a circle C, the inverse of z with respect to C is defined

as the point z1 lying on the same ray passing through z, which satisfy the condition

|z1||z| = r2, where r is the radius of C. It is easy to observe that the inverse z1 will be

lying outside C because |z1| = r2

|z| > r, since |z| < r. For a z inside C0, we choose z1 to

be the inverse of z to get the Poisson formula. With this z1, we can write

f(z) =
1

2πi

∫
C0

f(s)
( 1

s− z
− 1

s− z1

)
ds

Here since s runs over C0, we can write s = r0e
iϕ, 0 ≤ ϕ < 2π. Then ds = r0 i e

iϕdϕ =

is dϕ. Substituting this in the integral,

f(z) =
1

2π

∫ 2π

0

( s

s− z
− s

s− z1

)
f(s) dϕ

Since z1 is also lying on the same ray containing z, and |z1| = r02

r
, we can write

z1 =
r0

2

r
eiθ =

r0
2

re−iθ
=

ss

z
. Hence

f(z) =
1

2π

∫ 2π

0

( s

s− z
− s

s− ss
z

)
f(s) dϕ

=
1

2π

∫ 2π

0

( s

s− z
− z

s− z

)
f(s) dϕ

=
1

2π

∫ 2π

0

(ss− zz

|s− z|2
)
f(s) dϕ

=
1

2π

∫ 2π

0

(r02 − r2

|s− z|2
)
f(s) dϕ.

That is,

f(reiθ) =
1

2π

∫ 2π

0

(r02 − r2

|s− z|2
)
f(r0e

iϕ) dϕ, where 0 < r < r0.
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This can be treated as the poisson integral formula in complex form. Using the triangle

relation a2 = b2 + c2 − 2ab cosA applied to the triangle formed by 0, s and z, we get

|s− z| = r0
2 + r2 − 2r0r cos(θ − ϕ). Substituting this

f(reiθ) =
1

2π

∫ 2π

0

( (r0
2 − r2)f(r0e

iϕ)

r02 + r2 − 2r0r cos(θ − ϕ)

)
dϕ, where 0 < r < r0

u(r, θ) + i v(r, θ) =
1

2π

∫ 2π

0

((r02 − r2)
(
u(r0, ϕ) + i v(r0, ϕ)

)
r02 + r2 − 2r0r cos(θ − ϕ)

)
dϕ, where 0 < r < r0

Collecting the real part and calling P (r0, r, ϕ − θ) = r02−r2

r02+r2−2r0r cos(ϕ−θ)
, we get the

Poisson integral formula as

u(r, θ) =
1

2π

∫ 2π

0

P (r0, r, ϕ− θ)u(r0, ϕ) dϕ, where 0 < r < r0,

which is applicable to all harmonic functions u(r, θ), obtaining its values incide the

circle (r < r0) in terms of the values of u(r0, ϕ) with the help of the kernal. □

COROLLARY 0.3. Suppose the circle C0 is the unit circle, then the Poisson integral

formula becomes

f(reiθ) =
1

2π

∫ 2π

0

( (1− r2)f(eiϕ)

1 + r2 − 2r cos(θ − ϕ)

)
dϕ

=
1

2π

∫ 2π

0

P (r, ϕ− θ)f(eiϕ) dϕ, where 0 < r < r0,

Proof. Take r0 = 1 in Poisson integral formula. □

COROLLARY 0.4. 1
2π

∫ 2π

0

P (r0, r, ϕ− θ) dϕ = 1

Proof. Take f = 1 in Poisson integral formula. □


