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1 Introduction

In many practical problems we come across functions depending on more than one variable.
For example, the vibration at a point of a stretched string depends on its distance from end
points as well as time. Such functions are multivariable functions. That is, functions from
R2 or, in general, Rn to R.

Since the function values depends on more than one variable, the rate of change of the
function values may be studied with respect to each one of the variables. This means that
such functions may have the so called partial derivatives. We define it in the case of a two
variable function.

Definition 1.1. We say that f : R2 → R is said to have a partial derivative with respect to
x at a point x0 if the limit

lim
h→0

f(x0 + h, y)− f(x0, y)

h

exists. The derivative of f with respect to x is usually denoted by ∂f
∂x .

The same definition can be extended to multivariable functions having any number of
independent variables.

Now, as in the case of ordinary differential equations (ODE), one can consider equations
having partial derivatives.

2 Preliminaries

In this section we consider partial differential equations (PDE) and related preliminary con-
cepts.

Definition 2.1. An equation which involves a dependent variable, more than one independent
variables and the partial derivatives of the dependent variable with respect to the independent
variables is called a PDE.

The most general form of a PDE is

F (u, x, y, . . . ,
∂u

∂x
,
∂u

∂y
, . . . ,

∂2u

∂x2
,
∂2u

∂x∂y
, . . .) = 0

For example,

x
∂u

∂x
− y∂

2u

∂y2
= x3 + 4.

The order of the highest order derivative in the PDE is called the order of the PDE. In
the above example the PDE is of order 2 since ∂2u

∂x2
is the highest order derivative appearing.



3 Formation of PDE

We know that the ODE corresponding to an equation is obtained by differentiating it and
eliminating the arbitrary constants in the PDE. A first order PDE is formed by doing either
of the following, after partial differentiation with respect to independent variables.

1. Eliminating arbitrary constants in the equation

2. Eliminating arbitrary functions in the equation.

Note that in the case when z is dependent variable and x, y are independent variables in
PDE, we usually use the notations

∂z

∂x
=: p,

∂z

∂y
=: q,

∂2z

∂x2
=: r,

∂2z

∂x∂y
=: s,

∂2z

∂y2
=: t.

Example 3.1. Consider the equation z = (x+ a)(y + b).

Differentiating partially, we have

p =
∂z

∂x
= (y + b), q =

∂z

∂y
= (x+ a)

Now eliminating a, b using the three equations, we form the PDE

z = pq.

Example 3.2. Consider the equation z = f(u− v), where f is an arbitrary function.

Differentiating partially this equation, we have

p =
∂z

∂x
= f ′(u− v)× 1, q =

∂z

∂y
= f ′(u− v)×−1.

Now, eliminating f (or f ′) we form the PDE: p = −q or

p+ q = 0.

4 Solution of First order PDE

In this section, we consider the first order PDEs and their solution. Here also, z stands for
a dependent variable and x, y are independent variables, if not mentioned otherwise.

The general form of a first order PDE in two variables is

F (z, x, y, p, q) = 0.

There are many methods of solving first order PDEs: The ODE techniques, Lagrange’s
method for linear PDE, Charpit’s method, Jacobi’s method, method of separation of variables
etc.

4.1 Method 1: Reducing PDE to ODE

Some PDEs can be reduced to the form of ODE and can be treated as ODEs while solving.
For example, suppose that the PDE can be written as ∂z

∂x = f(x, y). Then since z has been
differentiated partially with respect to x, we can reach back the solution by integrating it
with respect to x, treating y as constant. This will solve such kind of a PDE. One should be
careful to take the constant of integration as a function of y if the integration is by treating
y as a constant.
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Example 4.1. Consider the PDE p = xy.

Here z has been differentiated with respect to x, treating y as a constant to arrive at
this PDE. Hence to solve it, one may integrate the PDE with respect to x, treating y as a
constant. This gives the solution:

z = y
x2

2
+ C(y)

Note: This method can be applied to higher order equations also. For example, consider

∂nz

∂mx∂ky
= f(x, y),

Here since z has been differentiated m times partially with respect to x and k times partially
with respect to y, we can reach back the solution by direct integration k times with respect
to y, treating x as constant and m times with respect to x, treating y as constant.

Example 4.2. Consider the PDE ∂2z
∂x∂y = xy.

Here z has been differentiated first with respect to y, treating x as a constant and then
with respect to x, treating y as a constant to arrive at this PDE. That is

∂

∂x

(
∂z

∂y

)
= xy.

Hence to solve it, one may integrate the PDE first with respect to x, treating y as a constant
and then with respect to y treating x as a constant.

∂z

∂y
= y

x2

2
+ C1(y)

and integrating a second time with respect to y,

z =
x2

2

y2

2
+

∫
C1(y) dy + C2(x)

Another situation when we can consider PDE as ODE happens when the PDE contains
only one independent variable explicitly, i.e., the other one is silent. Then one can treat it as
an ODE and solve it using ODE methods.

Example 4.3. Consider the equation ∂z
∂x = xz.

Here the variable y is silent. Hence it can be treated as the ODE dz
dx = xz. This can be

made variable separable and solved to get

ln z =
x2

2
+ C(y).

Note: case defined above can be used for solving higher order PDEs also.

Example 4.4. Consider the PDE:
∂2z

∂x2
= 4z

Here the variable y is silent. Hence it can be treated as a second order linear ODE with
constant coefficients. That is

(D2 − 4)z = 0.

The roots of the auxiliary equation are 2, −2, real and distinct. Hence the solution will be

z = C1(y) e2x + C2(y) e−2x.

Note that the constants may contain y, as y is treated as a constant in the process.
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4.2 Linear PDE

A linear first order PDE is a PDE which is linear in p and q. That is

P (x, y, z)p+Q(x, y, z)q = R(x, y, z),

where P,Q,R are functions of x, y, z is the form of a linear PDE of first order. In order to
solve it, we use a method called Lagrange’s method.

In Lagrange’s method, we consider an auxiliary equation

dx

P
=
dy

Q
=
dz

R

and solve it to get two independent solutions, say u = c1 and v = c2. Then the solution to
the linear PDE is given by

f(u, v) = 0

where f is an arbitrary function.

Example 4.5. Consider the PDE xp+ yq = z.

The auxiliary equation is given by

dx

x
=
dy

y
=
dz

z
.

Now taking the first two equations and solving using variable separable method, we get
ln x = ln y + ln c1, which becomes x

y = c1. Hence we can take

u =
x

y

.
Similarly, by taking the last two, we get ln y = ln z+ ln c2 which gives y

z = c2. Hence we can
take

v =
y

z
.

Thus the solution of the given PDE is f(xy ,
y
z ) = 0.

Note: Solution can also be f(xy ,
x
z ) or any such, as there are many pairs of independent

solution to the auxiliary equation.

One may also use permissible combinations of the auxiliary equation. For example, since

a

b
=
c

d
⇒ a

b
=
c

d
=
a+ c

b+ d
=
la+mc

lb+md
,

we can also have many equivalent forms of the auxiliary equation. In the above Example 4.5,

dx

x
=
dy

y
=
dz

z
=
d(x− y)

x− y
=
d(x− z)
x− z

=
d(y − z)
y − z

,

and we may get different solutions of the same PDE,

f(
x− y
x− z

,
x− y
y − z

) = 0 or f(
x− y
x− z

,
x− z
y − z

) = 0 etc.

Sometimes all the three parts of the auxiliary equation are combined to find the two
solutions. That is we may use

dx

P
=
dy

Q
=
dz

R
=
l dx+mdy + ndz

lP +mQ+ nR

with suitable l,m and n. The simple choices for l,m and n are constants or x, y and z or
1
x ,

1
y and 1

z etc.

4



Example 4.6. Consider the PDE: (bz − cy)p+ (cx− az)q = ay − bx.

The auxiliary equation is

dx

bz − cy
=

dy

cx− az
=

dz

ay − bx
=

ldx+mdy + ndz

l(bz − cy) +m(cx− az) + n(ay − bx)

If we choose l = a,m = b, n = c, we get

dx

bz − cy
=

dy

cx− az
=

dz

ay − bx
=
adx+ bdy + cdz

0
,

which implies d(ax+ by + cz) = 0, giving ax+ by + cz = c1.

Choosing l = x,m = y, n = z, we get

dx

bz − cy
=

dy

cx− az
=

dz

ay − bx
=
xdx+ ydy + zdz

0
,

which implies d(x
2

2 + y2

2 + z2

2 ) = 0, giving x2 + y2 + z2 = c2.

Thus the solution to the PDE is f(ax+ by + cz, x2 + y2 + z2) = 0.

4.3 Charpit’s method for solution of PDE

This method is usually used for solving first order non linear PDE. We consider any first
order PDE in two independent variables here, which is represented in the form

f(x, y, z, p, q) = 0.

As in the case of linear equation we form a set of subsidiary equations, and we find a
relation between x, y, z, p, q by solving the subsidiary equation:

dx

−fp
=

dy

−fq
=

dz

−pfp − qfq
=

dp

fx + pfz
=

dy

fy + qfz

Let this relation be given by
φ(x, y, z, p, q) = 0.

By using this relation, find p and q from the PDE in terms of the other variables, say
p = F1(x, y, z, q) and q = F2(x, y, z, p). Then

dz =
∂z

∂x
dx+

∂z

∂y
dy = p dx+ q dy = F1(x, y, z, q) dx+ F2(x, y, z, p) dy,

which on solving gives the solution z of the PDE.

Example 4.7. Consider the PDE: p2 + q2 = 1.

The auxiliary equation is

dx

−2p
=

dy

−2q
=

dz

−2p2 − 2q2
=
dp

0
=
dq

0

From the last two equations, we get p = a, a constant, and q = b, another constant.

Now since p2+q2 = 1, we have a2+b2 = 1, or in other words, b =
√

1− a2 ⇒ b =
√

1− a2.
Now substituting in the equation dz = p dx+ q dy, we get

dz = a dx+
√

1− a2 dy,

which on integration, gives the solution

z = ax+
√

1− a2y + C

Note: This type of a solution(z = ax + g(a)y + C) is expected whenever the PDE is of the
form f(p, q) = 0, that is, it does not contain any terms in x, y, z.
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Example 4.8. Consider the PDE: p2z + q2 − 4 = 0.

The auxiliary equation is

dx

2pz
=
dy

2q
=

dz

2p2z + 2q2
=

dp

−p3
=

dq

−p2q

From the last two equations, we get
dp

p
=
dq

q
,

which gives p = Cq. Substituting in the PDE we can get p and q in terms of z.

p2z + C2p2 − 4 = 0⇒ p =
2√

z + C2
, q =

2C√
z + C2

Now substituting in the equation dz = p dx+ q dy, we get

dz =
2√

z + C2
dx+

2C√
z + C2

dy,

√
z + C2 dz = 2 dx+ 2C dy,

which on integration, gives the solution

(z + C2)
3
2

3
2

= 2x+ 2Cy + C1

In Charpits method also, we can use combinations of the subsidiary equation as in the
case of Lagrange equation.

Example 4.9. Consider the PDE: z2 = xypq.

The subsidiary equation is

dx

xyq
=

dy

xyp
=

dz

2pqxy
=

dp

2zp− pqy
=

dq

2zq − pqx

By taking combinations of the first and second, and then using combination of last two, we
get:

=
pdx+ qdy

2xypq
=

xdp+ ydq

2xzp− pqxy + 2yzp− pqxy
adding the two:

=
pdx+ qdy + xdp+ ydq

2z(xp+ yq)
=

d(xp+ yq)

2z(xp+ yq)
.

Now equating this with the third item of the subsidiary equation:

dz

2pqxy
=

d(xp+ yq)

2z(xp+ yq)
⇒ dz

z
=
d(xp+ yq)

(xp+ yq)

Solving it, we get ln z = ln (xp+ yq) + lnC, which gives

z = C(xp+ yq)

Now for getting p in terms of other variables (in a simple form) make a substitution for yq
from the PDE:

z = C(xp+
z2

xp
)

This gives a quadratic equation in p, solving which we get p:

p2(cx2)− p(xz) + cz2 = 0⇒ p =
xz +

√
1− 4C2xz

2Cx2
=

z

Kx
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where K = 2C
1+
√
1−4C2

.

Substituting this in the PDE, we get q = Kz
y .

Now, substituting in dz = p dx+ q dy, we get

dz =
z

Kx
dx+

Kz

y
dy

dz

z
=

1

Kx
dx+

K

y
dy

ln z =
1

K
lnx+K ln y + lnC1

Hence the solution of the PDE is
z = C1x

1
K yK .

4.4 Jacobi’s method for solution of PDE

Here also we consider a first order non linear PDE, in general, of the form:

f(x, y, z, p, q) = 0.

It is supposed to have a solution of the form U(x, y, z) = 0. In that situation,

p =
∂z

∂x
= −

∂U
∂x
∂U
∂z

= −U1

U3
(,say)

q =
∂z

∂y
= −

∂U
∂y

∂U
∂z

= −U2

U3
(,say)

Substituting these in the PDE:

F (x, y, z, U1, U2, U3) = 0

Now form the subsidiary equation:

dx

FU1

=
dy

FU2

=
dz

FU3

=
dU1

−Fx
=
dU2

−Fy
=
dU3

−Fz

From these equations and the PDE, find U1, U2 and U3. Now

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz

= U1dx+ U2dy + U3dz

From this, we get the solution of the PDE, which is U(x, y, z) = 0.

Example 4.10. Consider the PDE: p2x+ q2y = z.

Substituting p == −U1
U3

and q == −U2
U3

, the equation becomes(
− U1

U3

)2
x+

(
− U2

U3

)2
y = z

which gives
xU1

2 + yU2
2 − zU3

2 = 0

The auxiliary equation is

dx

2xU1
=

dy

2yU2
=

dz

−2zU3
=

dU1

−U1
2 =

dU2

−U2
2 =

dU3

U3
2

From the first and fourth equations, we get

dx

2xU1
=

dU1

−U1
2 ⇒

dx

2x
=
dU1

−U1
⇒ U1 =

C1√
x
.
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Similarly, U2 = C2√
y and U3 = C3√

z
.

Now substituting in the equation

dU =
∂U

∂x
dx+

∂U

∂y
dy +

∂U

∂z
dz

=
C1√
x
dx+

C2√
y
dy +

C3√
z
dz,

which on integration, yields the solution

U =
C1x

1
2

1
2

+
C2y

1
2

1
2

+
C3z

1
2

1
2

.

Hence the solution to the PDE is

2C1

√
x+ 2C2

√
y + 2C3

√
z = 0.

4.5 Some special non linear PDE

4.5.1 Type I : f(p, q) = 0

This type of a PDE does not contain x, y, z terms. It can be shown that the solution to such
a PDE is always of the form

z = ax+ by + c,

where b has to be found in terms of a.

Example 4.11. Consider the PDE: p+ q = 1.

Here the solution must be of the form

z = ax+ by + c.

Then, differentiating we get p = a and q = b. Then a+ b = 1, on elimination. Thus b = 1−a
and the solution to the PDE is

z = ax+ (1− a)y + c.

Note: Eventhough we have not derived the solution in Example 4.11, it is easy to very that
the PDE formed from the answer is p+ q = 1.

4.5.2 Type II : f(p, q, z) = 0

This type of a PDE does not contain x, y terms. It can be shown that the solution to such a
PDE is always of the form

z = φ(u), where u = x+ ay.

and φ has to be found.

To find φ, we have p = dz
du and q = a dzdu . Substituting p, q in f(p, q, z) = 0, we get

f( dzdu , a
dz
du , z) = 0. This is an ODE in u and z, and can be solved to get z = φ(u).

Example 4.12. Consider the PDE: p (1 + q) = qz.

Assume that the solution is

z = φ(u), where u = x+ ay.

Then, differentiating we get p = dz
du and q = a dzdu Substituting in the given PDE, we get

1 + a dzdu = az, which on solving gives

u = ln (c1(az − 1)) + c2

Thus the solution of the PDE is x+ ay = ln (az − 1) + c2
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4.5.3 Type III : z = px+ qy + f(p, q)

This type of a PDE is said to be in Clairut’s form. The solution will be always of the form

z = ax+ by + f(p, q).

It is easy to see that this is a solution to the given PDE by forming the corresponding PDE.

Example 4.13. Consider the PDE: z = px+ qy + p2 + q2.

The solution is
z = ax+ by + a2 + b2.

4.5.4 Type IV : f(p, x) = g(q, y)

Here the PDE does not contain z term explicitly and can be separated in terms of x and y
along with their corresponding derivatives. Since x and y are independent variables separated
to two parts, they must be constant, if they are to be equal. Hence

f(p, x) = g(q, y) = k

Now solve f(x, p) = k, to get p in terms of x and solve g(y, q) = k, to get q in terms of y.
Let these be p = g1(x) and q = g2(y). Now since dz = ∂z

∂x dx+ ∂z
∂y dy, we have

dz = g1(x) dx+ g2(y) dy,

which on integrating gives the solution to the PDE.

Example 4.14. Consider the PDE: q − p+ x− y = 0.

That is,
x− p = y − q = k

From x− p = k and y − q = k, we get

p = x− k and q = y − k.

Then dz = (x− k)dx+ (y − k)dy, which on integration gives the solution

z =
x2

2
− kx+

y2

2
− ky + c.
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5 Second order PDE

In this section, we consider the next level PDEs, the second order PDE having two indepen-
dent variables.

A second order PDE in two independent variables x, y has the general form:

F (z, x, y,
∂z

∂x
,
∂z

∂y
,
∂2z

∂x2
,
∂2z

∂x∂y
,
∂2z

∂y2
) = 0

Also we use the notations Ux for ∂U
∂x , Uxy for ∂2U

∂x∂y , ... when U is a function of x and y.

6 Classification of second order PDE

Suppose we write the second order PDE as

A
∂2z

∂x2
+ 2B

∂2z

∂x∂y
+ C

∂2z

∂y2
= G

(
z, x, y,

∂z

∂x
,
∂z

∂y

)
.

Then we classify the PDE in the following order:

The PDE is said to be:

i Elliptic if AC −B2 > 0

ii Parabolic if AC −B2 = 0

iii Hyperbolic if AC −B2 < 0

Example 6.1. Consider the PDE:

x2 Uxx + xy Uyy + y2 Uxy = 0.

Here A = x2, B = y2

2 and C = xy and so AC −B2 = y(x3 − y3

4 ).

Hence it is

i Elliptic if y > 0 & x3 > y3

4 or if y < 0 & x3 < y3

4

ii Parabolic if y = 0 or x3 = y3

4

iii Hyperbolic if y > 0 & x3 < y3

4 or if y < 0 & x3 > y3

4 .

7 Method of separation of variables

This method is adopted when the solution of the PDE happens to be in a product of two
terms each including only a single independent variable. That is, in this method we assume
that the solution is in the form

z(x, y) = X(x)Y (y),

where X is a function of x, not involving y and Y is a function of y, not involving x.

Then ∂z
∂x = X ′Y , ∂z

∂y = XẎ , ∂2z
∂x2

= X ′′ Y , ∂2z
∂x∂y = X ′Ẏ , ∂2z

∂y2
= XŸ .

Note that to distinguish the derivative with respect to second variable, we use ‘dot’ notation.

After finding these derivatives, substitute them in the PDE. Now separate it in to two
sides so that the equation gets separated in its independent variables. Then it will be of the
form:

ODE(X,x) = ODE(Y, y) = k

Now solve the equations ODE(X,x) = k and ODE(Y, y) = k using ODE methods and find
the solutions X(x) and Y (y). Hence the solution to the given PDE will be

z = X(x)Y (y).
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Example 7.1. Consider the PDE: p = 2q + z.

Assume that the solution is z = XY . Then p = X ′Y and q = XẎ . Substituting in the
given PDE,

X ′Y = 2XẎ +XY.

Separating to two sides:

X ′
1

X
=

1

Y
(2Ẏ + Y ) = k.

Now,
X ′ = kX ⇒ X = c1e

kx

and
2Ẏ + Y = kY ⇒ Y = c2e

k−1
2
y.

Hence the solution to the PDE is z = c ekxe
k−1
2
y.

Now we consider three important PDEs; the Laplace equation, Wave equation and the
Heat equation.

7.1 Laplace Equation

This is an important equation which appears frequently in the potential theory. We solve it
by the method of separation of variables. Consider the Laplace equation in two variables

∂2U

∂x2
+
∂2U

∂y2
= 0.

Assume that the solution is U = X(x)Y (y). Now substituting in the Laplace equation,

X ′′Y +X Ÿ = 0.

Separating
X ′′

X
= − Ÿ

Y
= k.

There are three possible cases:

case 1: k = 0

In this case,
X ′′

X
= 0 ⇒ X ′′ = 0 ⇒ X = c1x+ c2

and

− Ÿ
Y

= 0 ⇒ Ÿ = 0 ⇒ Y = c3y + c4.

Hence the solution in this case is

U(x, y) = (c1x+ c2)(c3y + c4).

case 2: k > 0

We take k = α2. Then solving the first part,

X ′′

X
= α2 ⇒ X ′′ = α2X ⇒ X = c1 e

αx + c2 e
−αx

and

− Ÿ
Y

= α2 ⇒ Ÿ = −α2 Y ⇒ Y = e0x(c3 cos αy + c4 sinαy).

Hence the solution is

U(x, y) = (c1 e
αx + c2 e

−αx)(c3 cos αy + c4 sinαy).
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case 3: k < 0

We take k = −α2. Then solving the first part,

X ′′

X
= −α2 ⇒ X ′′ = −α2X ⇒ X = e0x(c1 cos α x+ c2 sinαx)

and

− Ÿ
Y

= −α2 ⇒ Ÿ = α2 Y ⇒ Y = c3 e
αy + c4 e

−αy,

giving the solution

U(x, y) = (c1 cos αx+ c2 sinαx)(c3 e
αy + c4 e

−αy).

7.2 Wave Equation - Formation

We consider the vibrations of a stretched string, tied to both ends. Without loss of generality,
assume that the string is kept parallel to X-axis and the length of the string is L. If U denotes
the vertical displacement of a point on the string (on vibration), it depends on two quanities:

1. the distance of the point from the left end (denoted by x)

2. time elapsed after starting the vibration (denoted by t)

Hence
U = U(x, t).

It is clear that the end points will not vibrate at any instant of time. Mathematically,

U(0, t) = U(L, t) = 0 for all t > 0.

Figure 1: String before motion

In order to simplify the modeling, we make certain assumptions.

• Vibration happens only in one dimension and each point of the string can move only
up and down (no horizontal motion happens).

• The string is homogenous. That is the mass per unit lengh (linear density ρ) is the
same at any position of the string.

• String is perfectly elastic and is not resistant to bending.

• The tension at each point of the string is so large that the weight of the string can be
negleted.

• The displacement and slopes are so small that their higher powers can be negleted.

Figure 2: String during motion

12



Figure 3: Enlarged portion PQ

To model the motion, we take a point P at a distance x from the left end and consider
another adjascent point Q, at a small distance M x apart from P . We first find the equation
of motion of the arc PQ and then make Q→ P (or equivalently M x→ 0) at the end in order
to get the equation of motion at the point P .

Let the angles that the tangents at P and Q makes with X axis be α and β respectively.
Suppose that the magnitudes of tensions at P and Q be T1 and T2 respectively, acting in
the tangential direction. Then the horizontal components of the tensions at P and Q are
respectively T1 cosα and T2 cosβ (to opposite directions).

Since there is no horizontal vibration, we have

T1 cosα = T2 cosβ = T, (say) (1)

But we know that the string vibrates vertically. This happens due to the force in that
direction, which is the vertical components of the tensions at the points P and Q. Thus the
effective force on the arc PQ is given by

F = T2 sin β − T1 sinα (2)

But Newton’s law of motion says that the force on PQ should be equal to the product of
mass and acceleration. Since the linear density is ρ and the length of PQ is M x, it mass is
M xρ. Hence

F =M x ρ
∂2U

∂t2
(3)

From (2) and (3), we have the equation of motion of the arc PQ:

T2 sin β − T1 sinα =M x ρ
∂2U

∂t2
(4)

Dividing this equation by the product of T M x (and using T2 cosβ = T1 cosα = T ),

tan β − tanα
M x

=
ρ

T

∂2U

∂t2
(5)

Now tan β is the slope at Q, that is ∂U
∂x at x+ M x and tanα is the slope ∂U

∂x at x. Applying
it,

∂U
∂x |(x+Mx) − ∂U

∂x |(x)
M x

=
ρ

T

∂2U

∂t2
(6)

This is another form of equation of motion of the arc PQ. Now to get the equation of motion
at the point P , we take the limiting situation when Q→ P or M x→ 0. That is

lim
Mx→0

∂U
∂x |(x+Mx) − ∂U

∂x |(x)
M x

= lim
Mx→0

ρ

T

∂2U

∂t2
(7)

13



But then the LHS gives the partial derivative of ∂U
∂x with respect to x and the RHS will not

have any change since it does not contain any M x. Thus

∂2U

∂t2
=
T

ρ

∂2U

∂x2

is the equation of vibration, known as the wave equation. Since ρ and T are strictly positive,
we usually take T

ρ as c2 (or, sometimes ρ
T as c2). Thus the wave equation is

∂2U

∂t2
= c2

∂2U

∂x2
.

Apart from the mentioned conditions

1. The left end does not move at any time. That is, U(0, t) = 0 for all t

2. The right end does not move at any time. That is U(L, t) = 0 for all t,

we make two more assumptions usually, while modeling the wave equation:

3. The initial position of the string is known. That is U(x, 0) = f(x), say.

4. The initial velocity of the string is known. That is Ut(x, 0) = g(x), say.

7.3 Wave Equation - solution

Consider the wave equation
∂2U

∂t2
= c2

∂2U

∂x2

with the conditions U(0, t) = 0 = U(L, t) for all t, U(x, 0) = f(x) and Ut(x, 0) = g(x).

Here we solve the wave equation by separation of variables method. Assume that the
solution is U(x, t) = X(x)Y (t). Substituting in wave equation,

X Ÿ = c2X ′′Y

Separating
X ′′

X
=

Ÿ

c2Y
= k.

There are three possible cases: k = 0, k > 0 and k < 0.

[Before going in to these cases, we observe that the intial condition U(0, t) = 0 implies
X(0)Y (t) = 0, forcing X(0) = 0, since if Y (t) = 0, there will not be any vibration as U = 0.
Similarly U(L, t) = 0 implies that X(L) = 0.]

case 1: k = 0

In this case,
X ′′

X
= 0 ⇒ X ′′ = 0 ⇒ X = c1x+ c2.

Now using the condition X(0) = 0, we get

c2 = 0.

Thus X(x) = c1x. Now X(L) = 0 implies

c1 = 0

(as L is strictly positive). Thus
X(x) = 0,

giving U = 0, leading to an uninteresting situation - there is no vibration at all.

14



case 2: k > 0, say k = α2, where α > 0.

X ′′

X
= α2 ⇒ X ′′ = α2X ⇒ X = c1 e

αx + c2 e
−αx

Now using the condition X(0) = 0, we get

c1 + c2 = 0. (8)

Now X(L) = 0 implies

c1 e
αL + c2 e

−αL = 0 (9)

(8)× eαL − (9) gives
c1 = 0

and substituting this c1 in (8) gives

c2 = 0.

Thus
X(x) = 0,

giving U = 0, leading to an uninteresting situation - there is no vibration at all.

case 3: k < 0, say k = −α2, where α > 0.

X ′′

X
= −α2 ⇒ X ′′ = −α2X ⇒ X(x) = c1 cos α x+ c2 sinαx

Now using the condition X(0) = 0, we get

c1 = 0, (10)

making X(x) = c2 sinαx. Now X(L) = 0 implies

c2 sinαL = 0 (11)

Since c2 6= 0 (if c2 = 0, X = 0⇒ U = 0), we must have αL = nπ, for each n = 0, 1, 2, . . .
(negative values of n will repeat the values of α2).

Thus α = nπ
L and hence

X(x) = c2 sin
nπ

L
x, for each n.

Now we find the solution for Y . For this,

Ÿ = −α2c2Y,

giving complex conjugate roots (± i α c = ± i nπ cL ) for auxiliary equation and the solu-
tion

Y (t) = b1cos
(nπc
L

t
)

+ b2sin
(nπc
L

t
)
.

Thus the solution is given by

U(x, t) =
[
b1cos

(nπc
L

t
)

+ b2sin
(nπc
L

t
)]

c2 sin
(nπ
L
x
)
, for each n.

But since c2, b1, b2 are arbitrary, they will also change as n vary. We use An, Bn for
constants b1 c2 and b2 c2 respectively. Now

Un(x, t) =
[
Ancos

(nπc
L

t
)

+Bnsin
(nπc
L

t
)]

sin
(nπ
L
x
)
, for each n.
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But we know that for a homogenous equation, the sum of the solutions is also a solution.
Here it turns out that the infinite sum of these expressions form the general solution to
the wave equation. Hence

U(x, t) =

∞∑
n=0

(
An cos

nπc

L
t+Bn sin

nπc

L
t
)
sin

nπ

L
x (12)

is the general solution to the wave equation. In order to find the arbitrary constants
An and Bn, we need to apply the second and third boundary conditions.

Now, U(x, 0) = f(x) gives

f(x) =

∞∑
n=0

An sin
nπ

L
x,

which is actually the sine series expansion of f(x). From theory of fourier series, it
follows that

An =
2

L

∫ L

0
f(x)sin

nπ

L
xdx. (13)

Similarly, Ut(x, 0) = g(x) gives

g(x) =
∞∑
n=0

Bn
nπ c

L
sin

nπ

L
x,

which is actually the sine series expansion of g(x). From theory of Fourier series, it
follows that

Bn
nπ c

L
=

2

L

∫ L

0
g(x)sin

nπ

L
xdx,

which gives the constant

Bn =
2

c nπ

∫ L

0
g(x)sin

nπ

L
xdx. (14)

Thus equation (12) togethor with (13) and (14) gives the complete solution of wave
equation.

7.3.1 Problems

1. A tightly streched string of lenth L is initially at rest in equilibrium position. If it is
set vibrating by giving to each its points a velocity λx(L− x), find the displacement of
string at any distance x from one end at any time t.

Solution: To solve this, let us consider the solution of wave equation

U(x, t) =
∞∑
n=0

(
An cos

nπc

L
t+Bn sin

nπc

L
t
)
sin

nπ

L
x

Now the string is at rest in its equilibrium position initially. This means

U(x, 0) = 0 = f(x).

So ∑
An sin

nπ

L
x = 0

This implies

An =
2

L

∫
0 dx = 0
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Hence

U(x, t) =
∞∑
n=0

Bn sin
nπc

L
t sin

nπ

L
x (15)

Now, the initial velocity at each point is given by

Ut(x, 0) = λx(L− x) = g(x)

This means that

λx(L− x) =
∞∑
n=0

Bn
nπc

L
sin

nπ

L
x (16)

Using Fourier sine series,

nπc

L
Bn =

2

L

∫ L

0
λx(L− x) sin

nπ

L
xdx

That is

Bn =
2

nπc

∫ L

0
λx(L− x) sin

nπ

L
xdx

=

{
0 if n is even,
8λL3

n4π4c
otherwise

(17)

Thus (15) with (17) gives the complete solution to the problem.

7.4 The D’Alemberts Solution to Wave Equation

If we observe the solution to wave equation (12), we can see that the solution can be written
in terms of x+ ct and x− ct. We solve the wave equation

∂2U

∂t2
= c2

∂2U

∂x2

with the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x) using D’Alemberts method.

We first define two new variables v = x+ ct and w = x− ct. Then

∂v

∂x
= 1,

∂w

∂x
= 1,

∂v

∂t
= c,

∂w

∂t
= −c.

Since x = v+w
2 and t = v−w

2c , we can treat x and t as functions of v and w. Thus U(x, t) can
be treated as a function of v and w. Now

∂U

∂x
=
∂U

∂v

∂v

∂x
+
∂U

∂w

∂w

∂x
= Uv + Uw

and

∂2U

∂x2
=

∂

∂x

(
∂U

∂x

)
=

∂

∂v

(
∂U

∂x

)
∂v

∂x
+

∂

∂w

(
∂U

∂x

)
∂w

∂x

=
∂

∂v
(Uv + Uw)

∂v

∂x
+

∂

∂w
(Uv + Uw)

∂w

∂x
= Uvv + 2Uvw + Uww.

In a similar way,
∂U

∂t
= c (Uv − Uw)

and
∂2U

∂t2
= c2 (Uvv − 2Uvw + Uww) .
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Substituting in wave equation, we get

Uvw = 0,

which is the wave equation in the new variables.

To solve it, it is enough to integrate it, first with respect to v and then with respect to
w, partially. Thus the solution is

U(x, t) = φ(x+ ct) + ψ(x− ct),

where φ and ψ are arbitrary functions to be evaluated.

Using the condition U(x, 0) = f(x), we get

φ(x) + ψ(x) = f(x) (18)

Now the second condition Ut(x, 0) = g(x) implies

φ′(x)− ψ′(x) =
1

c
g(x) (19)

integrating (19) from x0 to x, we get

φ(x)− ψ(x) = φ(x0)− ψ(x0) +
1

c

∫ x

x0

g(s) ds (20)

Adding (18) and (20),

φ(x) =
1

2

[
f(x) + φ(x0)− ψ(x0) +

1

c

∫ x

x0

g(s) ds

]
and hence

φ(x+ c t) =
1

2

[
f(x+ c t) + φ(x0)− ψ(x0) +

1

c

∫ x+c t

x0

g(s) ds

]
(21)

Similarly on doing (18) − (20), we get

ψ(x− c t) =
1

2

[
f(x− c t)− φ(x0) + ψ(x0)−

1

c

∫ x−c t

x0

g(s) ds

]
(22)

Thus

U(x, t) = φ(x+ c t) + ψ(x− c t) =
1

2
[f(x+ c t) + f(x− c t)] +

1

2c

∫ x+c t

x−c t
g(s) ds,

which is called the D’Alemberts solution to wave equation.

7.5 Heat Equation - Formation

Here we consider the conduction of heat through a uniform bar of length L. The temperature
at a cross sectional area of the bar, denoted by U , is a function of temperature t and its
position (we measure it from one end point) x. That is, U = U(x, t).

In order to smoothen the modeling procedure, we make some assumptions:

1. The bar is of uniform area of cross section, say A.

2. The sides of the bar are insulated so that heat will not escape along the sides.

3. The temperature at each point of a cross sectional area are the same.
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Consider a cross sectional area P at a distance x. Let Q1 be the heat flowing into this cross
sectional area. Now, if κ is the conductivity of the material and A is the cross sectional area,
then the amount of heat entering into P is given by

Q1 = −κA ∂U

∂x (at x)
(23)

Consider an adjascent cross sectional area Q, at a distance M x from P . Then the heat leaving
the cross section Q is given by

Q2 = −κA ∂U

∂x (at x+Mx)
(24)

Since the sides are assumed to be insulated, the difference amount [(23) - (24)] is the amount
of heat stored inside the portion PQ. That is the heat stored inside PQ is given by

H = κA

(
∂U

∂x (at x+Mx)
− ∂U

∂x (at x)

)
(25)

Now if S is the specific heat (amount of heat required to raise the temperature of the material
of unit mass by 10C) of the material, then the heat stored in PQ is given by

H = S m
∂U

∂t
, (26)

where m is the mass of PQ. Now, if ρ is the density of the material, m = ρA M x (since
A M x is the volume of PQ) and equation (26) becomes

H = S ρA M x
∂U

∂t
, (27)

But both the equations (25) and (27) give the heat stored inside PQ. Equating, we get

S ρA M x
∂U

∂t
= κA

(
∂U

∂x (at x+Mx)
− ∂U

∂x (at x)

)
Or

∂U

∂t
=

κ

Sρ

(
∂U
∂x |x+Mx − ∂U

∂x |x
M x

)
,

which gives the heat equation corresponding to the portion PQ. Now to get the heat equation
at the cross sectional area P , make Q→ P or equivalently, M x→ 0:

∂U

∂t
=

κ

Sρ
lim

Mx→0

(
∂U
∂x |x+Mx − ∂U

∂x |x
M x

)
,

Thus the heat equation is

∂U

∂t
=

κ

Sρ

(
∂2U

∂x2

)
,

Since κ, S, ρ are nonnegative, we abreviate κ
Sρ as c2. Thus the heat equation is

∂U

∂t
= c2

∂2U

∂x2
.
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7.6 Heat Equation - Solution

We solve heat equation by method of separation of variables. For this, we assume that

U(x, t) = X(x)T (t).

Substituting this (derivatives of this) in the heat equation, we get

XṪ = c2X ′′T

which gives

X ′′

X
=

Ṫ

c2T
= k

Here k is a real number. There are three situations:

Case 1: k = 0

Consider X′′

X = 0 ⇒ X ′′ = 0 ⇒ X(x) = C1x+ C2.

Now Ṫ
c2T

= 0 ⇒ Ṫ = 0 ⇒ T (t) = C3. Thus the solution in this case is:

U(x, t) = (C1x+ C2)C3 ⇒ U(x, t) = Ax+B

Case 2: k > 0, say k = α2.

Consider X ′′ = α2X. The auxiliary equation is m2 − α2 = 0, giving distinct real roots,
m = α, −α. Then X is given by

X(x) = C1e
αx + C2e

−αx

Now Ṫ
c2T

= α2 ⇒ Ṫ = α2c2T ⇒ T (t) = C3e
α2c2t.

Hence the solution is given by

U(x, t) = (C1e
αx + C2e

−αx)C3e
α2c2t = (Aeαx +Be−αx)eα

2c2t

Case 3: k < 0, say k = −α2.

Consider X ′′ = −α2X. The auxiliary equation is m2 + α2 = 0, giving complex conjugate
roots, m = i α, −i α. Then X is given by

X(x) = C1cos αx+ C2sinαx

Now Ṫ
c2T

= −α2 ⇒ Ṫ = −α2c2T ⇒ T (t) = C3e
−α2c2t.

Hence the solution is given by

U(x, t) = (C1cos αx+ C2sinαx)C3e
−α2c2t = (Acosαx+B sinαx)e−α

2c2t

Note that if we impose the boundary conditions U(0, t) = 0 = U(L, t), here also Case 3 is
the only case of interest, as in the case of wave equation.

7.6.1 Problems

1. A rod of lenth L with insulated sides is initially at a uniform temperature U0. Its ends
are suddenly cooled to 00C and are kept at that temperature. Find the temperature
function.

Solution: The heat equation is Ut = c2Uxx. Since U(0, t) = 0 = U(L, t), the only case
of interest is when k < 0 or k = −α2. In this case the solution is given by

U(x, t) = (Acosαx+B sinαx)e−α
2c2t
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The conditions given are U(0, t) = 0 = U(L, t) and U(x, 0) = U0. As in the case of
wave equation the first condition imply X(0) = 0, which means

0 = Ae−α
2c2t ⇒ A = 0

Thus

U(x, t) = (B sinαx)e−α
2c2t

Now the second condition gives

0 = B sinαL e−α
2c2t ⇒ sinαL = 0

which happens only if α = nπ
L for each n = 0, 1, 2, . . .. Thus the solution becomes

Un(x, t) = (Bn sin
nπ

L
x)e−α

2c2t for each n.

and the general solution is obtained by summing up:

U(x, t) =
∑

(Bn sin
nπ

L
x)e−α

2c2t (28)

Imposing the third condition U(x, 0) = U0, we get

U0 =
∑

(Bn sin
nπ

L
x)e0,

which is a sine series. Hence Bn are given by

Bn =
2

L

∫ L

0
U0sin

(nπx
L

)
dx

=
2U0

nπ
[1− (−1)n] . (29)

Thus (27) with (28) gives the solution to the problem. That is

U(x, t) =
∑ 2U0

nπ
[1− (−1)n] sin (

nπ

L
x) e−α

2c2t

is the required solution.

2. The ends A and B of a rod 20cm long have the temperature at 300C and 800C until
steady-state prevails. The temperature of the ends are changed to 400C and 600C
respectively. Find thetemperature distribution in the rod at time t.

Solution: This problem has two stages. First step is heating/cooling the rod in such a
way that the rod reaches in a steady state (that is a state in which temperature does
not vary further; thereby having no dependance on time). The second stage is giving
further heat/cooling so that the ends are changed to non-zero, constant temperatures.
So we need to do the problem in two stages.

Stage 1: Making the rod to a steady state in which the ends are at 300C and 800C.
Since it is a steady state, ∂U∂t = 0. Now from heat equation, Ut = c2Uxx, we get Uxx = 0
also. This means

XṪ = 0 and X ′′Y = 0⇒ Ṫ = 0 and X ′′ = 0⇒ T = C1 and X = C2x+ C3.

So the temperature in steady state is (always) given by the equation:

U(x, t) = ax+ b (taking C1C2 = a and C1C3 = b)
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To find a and b, apply the boundary conditions; that is U(0, t) = 30 and U(20, t) = 80.
This gives a = 5

2 and b = 30. Thus the temperature distribution at steady state is given
by

U(x, t) =
5

2
x+ 30.

Stage 2: From steady state to another state where the temperatures at end points are
made to 400C and 600C.

Note that here we are starting from steady state. That is our initial temperature
distribution (at t = 0) is given by U(x, 0) = 5

2x + 30 for 0 ≤ x ≤ 20. Now we are
making the rod to reach to a temperature 400C and 600C at the end points.

Apart from the heating/cooling effect supplied from outside, the temperature distribu-
tion is also affected by the existing temperature distribution prevailing at the steady
state. Hence our required temperature function U(x, t) will have two components: one
corresponding to the prevailing steady state (which is a function of x only and will
be denoted by U1(x)) and the second one due to the temperature given from outside
(which will be a function of x as well as t, denoted as U2(x, t)). Thus

U(x, t) = U1(x) + U2(x, t)

is the present temperature function required in the problem. Here the boundary con-
dition given are U(0, t) = 40, U(20, t) = 60 and U(x, 0) = 5

2x+ 30.

We need to find U1 and U2. Since U1(x) does not depend on t, U1t = 0 and from heat
equation we get U1xx = 0 and so U1(x) = ax+b as in the case of steady state. Again we
need the constants a and b. For this, use the conditions U1(0) = 40 and U1(20) = 60,
giving a = 1 and b = 40. Thus

U1(x) = x+ 40

This forces the second temperature function U2 to have 00C at both end points, making
in to the standard problem discussed in the previous example. To see this,

U(x, t) = x+ 40 + U2(x, t)⇒ U2(x, t) = U(x, t)− x− 40

Now U2(0, t) = U(0, t) − 0 − 40 = 40 − 40 = 0 and U2(20, t) = U(20, t) − 20 − 40 =
60− 60 = 0. Now, U2(x, 0) = U(x, 0)− x− 40 = 3x

2 − 10.

Hence we can find the function U2(x, t) as in the previous problem using the wave
equation with initial conditions

U2(0, t) = 0, U2(20, t) = 0 and U2(x, 0) = 3
2x− 10.

Think of U as U2 in the following:

The heat equation is Ut = c2Uxx. Since U(0, t) = 0 = U(20, t), the only case of interest
is when k < 0 or k = −α2. In this case the solution is given by

U(x, t) = (Acosαx+B sinαx)e−α
2c2t

The conditions given are U(0, t) = 0 = U(20, t) and U(x, 0) = 5
2x+ 30. As in the case

of wave equation the first condition imply X(0) = 0, which means

0 = Ae−α
2c2t ⇒ A = 0

Thus

U(x, t) = (B sinαx)e−α
2c2t
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Now the second condition gives

0 = B sinαL e−α
2c2t ⇒ sinαL = 0

which happens only if α = nπ
L for each n = 0, 1, 2, . . .. Thus the solution becomes

Un(x, t) = (Bn sin
nπ

L
x)e−α

2c2t for each n.

and the general solution is obtained by summing up:

U(x, t) =
∑

(Bn sin
nπ

20
x)e−α

2c2t (30)

Imposing the third condition U(x, 0) = 3
2x− 10, we get

3

2
x− 10 =

∑
(Bn sin

nπ

L
x)e0,

which is a sine series. Hence Bn are given by

Bn =
2

20

∫ L

0
(
3

2
x− 10)sin

(nπx
L

)
dx

= − 20

nπ
(1 + 2cos nπ) . (31)

The solution to the problem is

U(x, t) = U1(x) + U2(x, t) = x+ 40−
∑

(
20

nπ
(1 + 2cos nπ))sin

nπ

20
x)e−α

2c2t

is the required solution.
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