SINGULAR VALUE DECOMPOSITION AND ITS APPLICATIONS

DEEPESH K P

NITC

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

SPECTRAL THEOREM FOR MATRICES

Let A be a symmetric matrix. Then we can orthogonally diagonalize A. That is, we can find orthogonal matrix P such that

$$A = PDP^T$$

where P is an orthogonal matrix and D is a diagonal matrix.

- D contains eigenvalues of A (real) as its diagonal entries
- P contains (orthonormal) eigenvectors of A as its columns.
- $P^T P = I = PP^T$, Orthogonal matrix
- P rotates any vector by an angle (no change in magnitude)..

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

D stretches or compresses vectors

- Why only square matrices?
- Can we do this when A is a rectangular real matrix?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

What are the uses?

- Why only square matrices?
- Can we do this when A is a rectangular real matrix?
- What are the uses?
- Our aim is to have

$$A = U \Sigma V^{T},$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

U, V orthogonal and Σ is 'diagonal' in a way!

- A is an $m \times n$ matrix, $\Sigma_{m \times n}$, $U_{m \times m}$, $V_{n \times n}$
- Plenty of applications!

If A is a 3×5 matrix,

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

and U is 3×3 , V will be 5×5 .

- Let $A_{m \times n}$ be an $m \times n$ matrix.
- $A^T A_{n \times n}$ and $A A^T_{m \times m}$ are square, symmetric, positive matrices..
- Spectral theorem $\Rightarrow A^T A = PDP^T$ and $AA^T = Q\tilde{D}Q^T$.
- ► Eigenvalues of *A^TA* and *AA^T* are same, except for zeros..

 $A^{T}Av = \lambda v \Rightarrow AA^{T}(Av) = \lambda(Av) \Rightarrow Av$ an eigenvalue if $\neq 0$.

If Av = 0, then v corresponds to $\lambda = 0$

- ▶ If $A_{n \times n}$ has rank *r*, then n r eigenvalues are 0 (see N(A))..
- Let $\lambda_1, \lambda_2, \ldots, \lambda_r$ be the nonzero eigenvalues (r = rank(A))...
- λ_i are all positive..
- *P* contains (orthonormal) eigenvectors of $A^T A$ as its columns.
- Q contains (orthonormal) eigenvectors of AA^T as its columns.

For a moment assume $A = U \Sigma V^T$.

- $A^T A = (V \Sigma^T U^T) (U \Sigma V^T) = V \Sigma^2 V^T.$
- $\Sigma^2 = \Sigma^T \Sigma$ contains eigenvalues (positive) of $A^T A$
- So Σ contains square roots of eigenvalues of A^TA
- Also V can be taken as orthogonal eigenvectors of $A^T A$. (i.e., P)

•
$$AA^{T} = (U\Sigma V^{T})(V\Sigma^{T}U^{T}) = U\Sigma^{2}U^{T}.$$

So U can be taken as orthogonal eigenvectors of AA^{T} . (i.e., Q)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

But what guarantees A can be written so?

If A is a 3×5 matrix,

$$\Sigma\Sigma^{T} = \begin{bmatrix} \sigma_{1} & 0 & 0 & 0 & 0 \\ 0 & \sigma_{2} & 0 & 0 & 0 \\ 0 & 0 & \sigma_{3} & 0 & 0 \end{bmatrix} \begin{bmatrix} \sigma_{1} & 0 & 0 \\ 0 & \sigma_{2} & 0 \\ 0 & 0 & \sigma_{3} \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} \sigma_{1}^{2} & 0 & 0 \\ 0 & \sigma_{2}^{2} & 0 \\ 0 & 0 & \sigma_{3}^{2} \end{bmatrix} \sim \Sigma^{2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

and U is 3×3 , V will be 5×5 .

We have $A^T A = P D P^T$

Since A^TA (also AA^T) is a positive definite matrix, D contains only positive entries on the diagonal.

- $D = diag(\lambda_1, \lambda_2, \dots, \lambda_m)$, assume increasing order.
- Let $\sigma_i = \sqrt{\lambda_i}$ and $D^{\frac{1}{2}} = diag(\sigma_1, \sigma_2, \dots, \sigma_m)$
- Define $|A| = VD^{\frac{1}{2}}V^{T}$ (modulus operator)
- Then $|A|^2 = A^T A$..
- ▶ What is connection between A and |A|?
- Polar decomposition!

Suppose v_1 , v_2 , v_3 are column vectors and $B = [v_1 v_2 v_3]$. Then

$$AB = A \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = \begin{bmatrix} Av_1 & Av_2 & Av_3 \end{bmatrix}$$

Suppose u_1, u_2, u_3 are row vectors and $A = [u_1 \ u_2 \ u_3]^T$. Then

$$AB = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} B = \begin{bmatrix} u_1 B \\ u_2 B \\ u_3 B \end{bmatrix}$$
$$AD = A \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c \end{bmatrix} = \begin{bmatrix} av_1 & bv_2 & cv_3 \end{bmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

Consider $A_{m \times n}$ (matrix with $n \le m$) (other case is similar)

- $\blacktriangleright A: \mathbb{R}^n \to \mathbb{R}^m$
- $A^T A$ is real symmetric, positive matrix $n \times n$ matrix.
- A^TA has positive eigenvalues λ_i = σ_i² and orthonormal eigenvectors v₁, v₂,..., v_n in ℝⁿ.
- ▶ $rank(A) = r \le n \le m$. (Think r = 3, n = 4, m = 5)

•
$$\sigma_{r+1},\ldots,\sigma_n=0..$$

• Define $u_1 = \frac{1}{\sigma_1} A v_1$, $u_2 = \frac{1}{\sigma_2} A v_2$, ... $u_r = \frac{1}{\sigma_r} A v_r$, in \mathbb{R}^m

• Or
$$Av_1 = \sigma_1 u_1$$
, $Av_2 = \sigma_2 u_2$,..., $Av_r = \sigma_r u_r$

• $\{u_1, u_2, \ldots, u_r\}$ are orthonormal vectors in \mathbb{R}^m

$$\langle u_i, u_j \rangle = \delta_{ij}$$

- Hence independent and can be extended to a basis for \mathbb{R}^m
- Gramm-Schmidt gives ONB for \mathbb{R}^m (extension).

• Let it be
$$\{u_1, u_2, ..., u_r, ..., u_m\}$$
.

• Call
$$U_{m \times m} = [u_1 \ u_2 \ \dots \ u_r \ \dots \ u_m], \ V_{n \times n} = [v_1 \ v_2 \ \dots \ v_n]$$

• $\Sigma_{m \times n} = diag(\sigma_1, \sigma_2, \dots, \sigma_r, 0, 0, \dots, 0)$ (rectangular)

If
$$m = 5, n = 4, r = 3$$

$$\Sigma_{5\times4} = \begin{bmatrix} \sigma_1 & 0 & 0 & 0 \\ 0 & \sigma_2 & 0 & 0 \\ 0 & 0 & \sigma_3 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆□▶ ▲□ ▶

• Enough to show $AV = U\Sigma$

 $\blacktriangleright A: \mathbb{R}^n \to \mathbb{R}^m$

►
$$v_i \in \mathbb{R}^n$$
, $Av_i \in \mathbb{R}^m$, $u_j \in \mathbb{R}^m$

•
$$Av_1 = \sigma_1 u_1, Av_2 = \sigma_2 u_2, \dots, Av_r = \sigma_r u_r, Av_{r+1} = 0, \dots, Av_n = 0$$

$$AV = A[v_1 v_2 \dots v_r \dots v_n]$$

=
$$[Av_1 Av_2 \dots Av_r \dots Av_n]_{m \times n}$$

=
$$[\sigma_1 u_1 \sigma_2 u_2 \dots \sigma_r u_r 0 u_{r+1} \dots 0 u_n]$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

$$AV = \begin{bmatrix} u_1 & u_2 & \dots & u_n & \dots & u_m \end{bmatrix}_{m \times m} \begin{bmatrix} \sigma_1 & 0 & \dots & 0 \\ 0 & \sigma_2 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \dots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}_{m \times n}$$

This gives $AV = U\Sigma$ or

$$A = U \Sigma V^{T},$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

which is the SVD.

Consider $A = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$

Then

$$A^{T}A = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$
 and $A^{T}A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• Eigenvalues are $\lambda = 3, 1$ (and 0)

• Singular values are $\sqrt{3}$, 1 (and 0)

Orthogonal Eigenvectors of $A^T A$ gives

$$V = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

Take $u_1 = \frac{1}{\sqrt{3}}Av_1$ and $u_2 = \frac{1}{1}Av_2$ and u_3 as any orthonormal vector in \mathbb{R}^3 :

$$U = \begin{bmatrix} \frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \end{bmatrix}$$

and

$$\boldsymbol{\Sigma} = \begin{bmatrix} \sqrt{3} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{1} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix},$$

we get $A = U \Sigma V^T$.

EFFECTIVE RANK OF A MATRIX

- Even minor calculation errors can change the rank of a matrix
- The matrix

$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4.01 \end{bmatrix}$$

has rank 2, whereas one row is 'almost' dependent on the other.

Practically rank is 1. But any program will give the rank as 2.

•
$$rank(A) = rank(AA^T)(why?)$$

- For a diagonalizable matrix, rank is the number of nonzero eigenvalues..
- rank(A)= number of positive singular values for any matrix..
- ► For A, singular values are 5.0080... and 0.00199 (negligible)
- Hence, the size of singular values decides the size of the 'effective data' or the rank.

▶ Note that R(A) and $R(A^TA)$ may be in two different spaces!

- But N(A) and $N(A^T A)$ are subspaces of same space.
- We can show $N(A) = N(A^T A)$..
- Hence nullity($A^T A$)=nullity(A).

• So
$$rank(A) = rank(A^T A)$$

- Suppose we want to send a picture having 1000 × 1000 pixels from a satellite
- Then the matrix has 1000000 entries in it
- You need to send a huge sized data to transfer the file
- The rank of the matrix may be 200 (remaining singular values will be zeros)
- many of these rows also may be negligible (singular values may be minimal (so effective rank will be smaller than 200)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

By sending the biggest 100 singular values and the corresponding vectors, it will give a very good picture.

IMAGE PROCESSING

- ► In complex numbers, we can split a complex number into its magnitude and angle form the polar form $z = re^{i\theta}$.
- Can we split a square matrix A = QS where Q is orthogonal, S is symmetric, positive matrix?

Polar decomposition of a matrix (A = SQ also)

$$\bullet \ A = U\Sigma V^{T} = U(V^{T}V)\Sigma V^{T}$$

• Call
$$Q = UV^T$$
 and $S = V\Sigma V^T$

(RECALL |A|)

- Q does not change the size of any vector (rotates/reflects), S stretches or compresses
- Helpful in continuum mechanics
- when rotation happens and when the size gets changed during a continuous process!

MOORE-PENROSE INVERSE

B is said to be a Moore-Penrose inverse of A if

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- $\blacktriangleright ABA = A$
- $\blacktriangleright BAB = B$
- ► (*AB*)* = *AB*
- ► (*BA*)* = *BA*

We denote $B = A^{\dagger}$

- ► A[†] exists
- ► A[†] is unique
- If A^{-1} exists, $A^{\dagger} = A^{-1}$.

Why it exists?

 $\frac{1}{x}$ exists whenever $x \neq 0$. So for the $m \times n$ block diagonal matrix

$$D = \begin{bmatrix} D_1 & 0 \\ 0 & 0 \end{bmatrix}$$

where D_1 is a square diagonal matrix, and is invertible. So define

$$D^{\dagger} = egin{bmatrix} D_1^{-1} & 0 \ 0 & 0 \end{bmatrix}$$

where D^{\dagger} is an $n \times m$ matrix and $DD^{\dagger}D = D$... Why unique?

M-P INVERSE FOR DIAGONAL MATRICES

$$\Sigma = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \\ 0 & 0 & \sigma_3 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \Sigma^{\dagger} = \begin{bmatrix} \frac{1}{\sigma_1} & 0 & 0 & 0 \\ 0 & \frac{1}{\sigma_2} & 0 & 0 \\ 0 & 0 & \frac{1}{\sigma_3} & 0 \end{bmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

• Calculate $\Sigma\Sigma^{\dagger}$ and $\Sigma\Sigma^{\dagger}\Sigma$?

- For an $m \times n$ matrix A, we can take $A^{\dagger} = V \Sigma^{\dagger} U^{T}$
- A^{\dagger} is the Moore Penrose inverse of A.

Why it is unique?

Suppose there is another matrix *B* like A^{\dagger} .

• Observe that
$$AA^{\dagger} = AB$$

 $AA^{\dagger} = ABAA^{\dagger}$
 $= (AB)^*(AA^{\dagger})^* = B^*A^*A^{\dagger^*}A^* = B^*(AA^{\dagger}A)^*$

$$=(AB)^*=AB$$

• Similarly $A^{\dagger}A = BA$

• Hence $A^{\dagger} = B$

$$A^{\dagger} = A^{\dagger}AA^{\dagger} = A^{\dagger}AB = BAB = B$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のへぐ

We are interested in solving system Ax = b.

- For the equation Ax = b, there may or may not be solutions.
- Plenty of solutions/unique solution/no solution are possible.
- If there are plenty of solutions, find the solution of minimal norm

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

If no solutions, find approximate solution of minimal norm

• The equation Ax = b has a solution if and only if $b \in R(A)$.

- Since R(A) is spanned by column vectors, b must be in the column space for a solution.
- This means b should be a depending on column vectors
- This happens iff rank(A) = rank(Ab)
- There is unique solution iff N(A) = 0
 - Suppose x_0 and x_1 are two solutions of Ax = b
 - ▶ $x_1 x_0$ should be solution of Ax = 0. That is $x_1 x_0 \in N(A)$

- $x_1 \neq x_0$ iff $N(A) \neq \{0\}$.
- So unique solution iff $N(A) = \{0\}$.
- ▶ Rank-nullity theorem implies rank(A) = rank(Ab) = n

SOLUTION OF SYSTEM OF EQUATIONS

- There are infinite number of solutions iff $N(A) \neq \{0\}$..
 - ▶ We can show that, if x_0 is a solution, each $z \in N(A)$ gives $x_0 + z$ a solution of same equation.
 - ► Conversely, whenever x_1 is any other solution, $x_1 = x_0 + z$ for some $z \in N(A)$, since $x_1 x_0 \in N(A)$.

Due to rank-nullity theorem, rank(A) < n, the number of variables iff there are infinite number of solutions.</p>

SUMMARY

Ax = b has

- No solution iff $rank(A) \neq rank(Ab)$
- Unique solution iff rank(A) = rank(Ab) = n
- Infinitely many solutions iff rank(A) = rank(Ab) < n</p>

If there are infinite number of solutions, how to find a 'suitable' solution?

Solution of smallest size!

•
$$Ax = b$$
 solvable iff $b \in R(A) = R(AA^{\dagger})$

▶
$$y \in R(A) \implies y = Ax = AA^{\dagger}Ax \in R(AA^{\dagger})$$

▶ $y \in R(AA^{\dagger}) \implies y = AA^{\dagger}x \in R(A)$

• But
$$P = AA^{\dagger}$$
 is a projection. So $b = AA^{\dagger}b$.

- So $Ax = b = AA^{\dagger}b$ gives $A^{\dagger}b$ is a solution!
- Among all solutions of Ax = b, $A^{\dagger}b$ has the minimal norm..

Note that $A^{\dagger}b$ satisfies the equation Ax = b.

- Take any other solution x_0 of Ax = b
- $x_0 \in H = R(A^{\dagger}A) \oplus N(A^{\dagger}A)$, orthogonal sum

$$\blacktriangleright x_0 = A^{\dagger}b + (x_0 - A^{\dagger}b)$$

$$||x_0||^2 = ||A^{\dagger}b||^2 + ||(x_0 - A^{\dagger}b)||^2$$

$$||\mathbf{x}_0|| \geq ||\mathbf{A}^{\dagger}\mathbf{b}||$$

• Among all solutions of Ax = b, $A^{\dagger}b$ has minimal norm.

So it gives least square solution.

The equation Ax = b has a solution if and only if $b \in R(A)$.

- Suppose $b \notin R(A)$. Then no solution.
- Consider $A^{\dagger}Ax = A^{\dagger}b$ has a solution since $b \in R(A^{\dagger}A) = R(A^{\dagger})$..
- $x = A^{\dagger}b$ is a solution to the above also.
- But it need not satisfy Ax = b. So it is an approximate solution.
- ► If A invertible, it coincide with the actual solution.

•
$$||Ax - b||^2 = ||Ax - AA^{\dagger}b||^2 + ||AA^{\dagger}b - b||^2$$

• See that $\langle Ax - AA^{\dagger}b, AA^{\dagger}b - b \rangle = 0$

•
$$||Ax - b||^2 \ge ||AA^{\dagger}b - b||^2$$

Among all approximate solutions of Ax = b, A[†]b gives least error solution.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Why low rank is decided by size of singular values?
- What is the relation between eigenvalues and singular values? λ_i lies between largest and smallest singular values
- What is Carl inequality? sum of modulii of eigenvalues is less than or equal to sum of singular values.
- How approximation numbers emerges out of singular values? Using a maximum criterion for singular values.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Gilbert Strang: Linear Algebra and its applications, Fourth Edn, Cengage, 2006.

THANK YOU

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >