Singular value Decomposition and its APPLICATIONS

DEEPESH K P

NITC

Spectral theorem for matrices

Let A be a symmetric matrix. Then we can orthogonally diagonalize A. That is, we can find orthogonal matrix P such that

$$
A=P D P^{\top}
$$

where P is an orthogonal matrix and D is a diagonal matrix.

- D contains eigenvalues of A (real) as its diagonal entries
- P contains (orthonormal) eigenvectors of A as its columns.
- $P^{T} P=I=P P^{T}$, Orthogonal matrix
- P rotates any vector by an angle (no change in magnitude)..
- D stretches or compresses vectors

FURTHER QUESTIONS

- Why only square matrices?
- Can we do this when A is a rectangular real matrix?
- What are the uses?

FURTHER QUESTIONS

- Why only square matrices?
- Can we do this when A is a rectangular real matrix?
- What are the uses?
- Our aim is to have

$$
A=U \Sigma V^{\top}
$$

U, V orthogonal and Σ is 'diagonal' in a way!

- A is an $m \times n$ matrix, $\Sigma_{m \times n}, U_{m \times m}, V_{n \times n}$
- Plenty of applications!

If A is a 3×5 matrix,

$$
\Sigma=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 & 0
\end{array}\right]
$$

and U is $3 \times 3, V$ will be 5×5.

- Let $A_{m \times n}$ be an $m \times n$ matrix.
- $A^{T} A_{n \times n}$ and $A A^{T}{ }_{m \times m}$ are square, symmetric, positive matrices..
- Spectral theorem $\Rightarrow A^{T} A=P D P^{T}$ and $A A^{T}=Q \tilde{D} Q^{T}$.
- Eigenvalues of $A^{T} A$ and $A A^{T}$ are same, except for zeros..

$$
A^{T} A v=\lambda v \Rightarrow A A^{T}(A v)=\lambda(A v) \Rightarrow A v \text { an eigenvalue if } \neq 0 .
$$

If $A v=0$, then v corresponds to $\lambda=0$

- If $A_{n \times n}$ has rank r, then $n-r$ eigenvalues are 0 (see $N(A)$).
- Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ be the nonzero eigenvalues $(r=\operatorname{rank}(A))$..
- λ_{i} are all positive..
- P contains (orthonormal) eigenvectors of $A^{T} A$ as its columns.
- Q contains (orthonormal) eigenvectors of $A A^{T}$ as its columns.

THE REVERSE CALCULATION!

For a moment assume $A=U \Sigma V^{T}$.

- $A^{T} A=\left(V \Sigma^{T} U^{T}\right)\left(U \Sigma V^{T}\right)=V \Sigma^{2} V^{T}$.
- $\Sigma^{2}=\Sigma^{T} \Sigma$ contains eigenvalues (positive) of $A^{T} A$
- So Σ contains square roots of eigenvalues of $A^{T} A$
- Also V can be taken as orthogonal eigenvectors of $A^{T} A$. (i.e., P)
- $A A^{T}=\left(U \Sigma V^{T}\right)\left(V \Sigma^{T} U^{T}\right)=U \Sigma^{2} U^{T}$.
- So U can be taken as orthogonal eigenvectors of $A A^{T}$. (i.e., Q)
- But what guarantees A can be written so?

If A is a 3×5 matrix,

$$
\Sigma \Sigma^{T}=\left[\begin{array}{ccccc}
\sigma_{1} & 0 & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
\sigma_{1}^{2} & 0 & 0 \\
0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{3}^{2}
\end{array}\right] \sim \Sigma^{2}
$$

and U is $3 \times 3, V$ will be 5×5.

We have $A^{T} A=P D P^{T}$

- Since $A^{T} A$ (also $A A^{T}$) is a positive definite matrix, D contains only positive entries on the diagonal.
- $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right)$, assume increasing order.
- Let $\sigma_{i}=\sqrt{\lambda_{i}}$ and $D^{\frac{1}{2}}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{m}\right)$
- Define $|A|=V D^{\frac{1}{2}} V^{T}$ (modulus operator)
- Then $|A|^{2}=A^{T} A$..
- What is connection between A and $|A|$?
- Polar decomposition!

Matrix Multiplication

Suppose v_{1}, v_{2}, v_{3} are column vectors and $B=\left[\begin{array}{ll}v_{1} & v_{2} v_{3}\end{array}\right]$. Then

$$
A B=A\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]=\left[\begin{array}{lll}
A v_{1} & A v_{2} & A v_{3}
\end{array}\right]
$$

Suppose u_{1}, u_{2}, u_{3} are row vectors and $A=\left[\begin{array}{lll}u_{1} & u_{2} & u_{3}\end{array}\right]^{T}$. Then

$$
\begin{gathered}
A B=\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] B=\left[\begin{array}{l}
u_{1} B \\
u_{2} B \\
u_{3} B
\end{array}\right] \\
A D=A\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & v_{2} & v_{3}
\end{array}\right]\left[\begin{array}{lll}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{array}\right]=\left[\begin{array}{lll}
a v_{1} & b v_{2} & c v_{3}
\end{array}\right]
\end{gathered}
$$

How to establish SVD

Consider $A_{m \times n}$ (matrix with $n \leq m$) (other case is similar)

- $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- $A^{T} A$ is real symmetric, positive matrix $n \times n$ matrix.
- $A^{T} A$ has positive eigenvalues $\lambda_{i}=\sigma_{i}^{2}$ and orthonormal eigenvectors $v_{1}, v_{2}, \ldots, v_{n}$ in \mathbb{R}^{n}.
- $\operatorname{rank}(A)=r \leq n \leq m$. (Think $r=3, n=4, m=5$)
- $\sigma_{r+1}, \ldots, \sigma_{n}=0$..
- Define $u_{1}=\frac{1}{\sigma_{1}} A v_{1}, u_{2}=\frac{1}{\sigma_{2}} A v_{2}, \ldots u_{r}=\frac{1}{\sigma_{r}} A v_{r}, \quad$ in \mathbb{R}^{m}
- $\operatorname{Or} \boldsymbol{A} v_{1}=\sigma_{1} u_{1}, A v_{2}=\sigma_{2} u_{2}, \ldots, A v_{r}=\sigma_{r} u_{r}$
- $\left\{u_{1}, u_{2}, \ldots, u_{r}\right\}$ are orthonormal vectors in \mathbb{R}^{m}

$$
\left\langle u_{i}, u_{j}\right\rangle=\delta_{i j}
$$

- Hence independent and can be extended to a basis for \mathbb{R}^{m}
- Gramm-Schmidt gives ONB for \mathbb{R}^{m} (extension).
- Let it be $\left\{u_{1}, u_{2}, \ldots, u_{r}, \ldots, u_{m}\right\}$.
- Call $U_{m \times m}=\left[\begin{array}{lllll}u_{1} & u_{2} & \ldots & u_{r} & \ldots\end{array} u_{m}\right], V_{n \times n}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{n}\end{array}\right]$
- $\Sigma_{m \times n}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}, 0,0, \ldots, 0\right)$ (rectangular)

If $m=5, n=4, r=3$

$$
\Sigma_{5 \times 4}=\left[\begin{array}{cccc}
\sigma_{1} & 0 & 0 & 0 \\
0 & \sigma_{2} & 0 & 0 \\
0 & 0 & \sigma_{3} & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

CLAIM: $A=U \Sigma V^{\top}$

- Enough to show $A V=U \Sigma$
- $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$
- $v_{i} \in \mathbb{R}^{n}, A v_{i} \in \mathbb{R}^{m}, u_{j} \in \mathbb{R}^{m}$
- $\boldsymbol{A} v_{1}=\sigma_{1} u_{1}, A v_{2}=\sigma_{2} u_{2}, \ldots, A v_{r}=\sigma_{r} u_{r}, A v_{r+1}=0, \ldots, A v_{n}=0$

$$
\begin{aligned}
A V & =A\left[v_{1} v_{2} \ldots v_{r} \ldots v_{n}\right] \\
& =\left[A v_{1} A v_{2} \ldots A \cdot A v_{r} \ldots A v_{n}\right]_{m \times n} \\
& =\left[\begin{array}{lllll}
\sigma_{1} u_{1} & \sigma_{2} u_{2} & \ldots \sigma_{r} u_{r} 0 u_{r+1} \ldots 0 u_{n}
\end{array}\right]
\end{aligned}
$$

$$
A V=\left[\begin{array}{llllll}
u_{1} & u_{2} & \ldots & u_{n} & \ldots & u_{m}
\end{array}\right]_{m \times m}\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & \ldots & 0 \\
0 & . & \ldots & \dot{0} \\
0 & 0 & \ldots & 0=\sigma_{n} \\
0 & 0 & \ldots & 0 \\
. & . & \ldots & . \\
0 & 0 & \ldots & 0
\end{array}\right]_{m \times n}
$$

This gives $A V=U \Sigma$ or

$$
A=U \Sigma V^{T},
$$

which is the SVD.

EXAMPLE

Consider

$$
A=\left[\begin{array}{rr}
1 & -1 \\
0 & 1 \\
1 & 0
\end{array}\right]
$$

Then

$$
A^{T} A=\left[\begin{array}{rr}
2 & -1 \\
-1 & 2
\end{array}\right] \text { and } A^{T} A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]
$$

- Eigenvalues are $\lambda=3,1$ (and 0)
- Singular values are $\sqrt{3}, 1$ (and 0)

Orthogonal Eigenvectors of $A^{T} A$ gives

$$
V=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Take $u_{1}=\frac{1}{\sqrt{3}} A v_{1}$ and $u_{2}=\frac{1}{1} A v_{2}$ and u_{3} as any orthonormal vector in \mathbb{R}^{3} :

$$
U=\left[\begin{array}{ccc}
\frac{\sqrt{2}}{\sqrt{3}} & 0 & \frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}}
\end{array}\right]
$$

and

$$
\Sigma=\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

we get $A=U \Sigma V^{T}$.

EfFECTIVE RANK OF A MATRIX

- Even minor calculation errors can change the rank of a matrix
- The matrix

$$
A=\left[\begin{array}{cc}
1 & 2 \\
2 & 4.01
\end{array}\right]
$$

has rank 2, whereas one row is 'almost' dependent on the other.

- Practically rank is 1 . But any program will give the rank as 2 .
- $\operatorname{rank}(A)=\operatorname{rank}\left(A A^{T}\right)(w h y ?)$
- For a diagonalizable matrix, rank is the number of nonzero eigenvalues..
- $\operatorname{rank}(A)=$ number of positive singular values for any matrix..
- For A, singular values are 5.0080... and 0.00199 (negligible)
- Hence, the size of singular values decides the size of the 'effective data' or the rank.

W HY $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T} A\right) ?$

- Note that $R(A)$ and $R\left(A^{T} A\right)$ may be in two different spaces!
- But $N(A)$ and $N\left(A^{T} A\right)$ are subspaces of same space.
- We can show $N(A)=N\left(A^{T} A\right)$..
- Hence $\operatorname{nullity}\left(A^{T} A\right)=\operatorname{nullity}(A)$.
- $\operatorname{Sorank}(A)=\operatorname{rank}\left(A^{T} A\right)$

ImAGE PROCESSING

- Suppose we want to send a picture having 1000×1000 pixels from a satellite
- Then the matrix has 1000000 entries in it
- You need to send a huge sized data to transfer the file
- The rank of the matrix may be 200 (remaining singular values will be zeros)
- many of these rows also may be negligible (singular values may be minimal (so effective rank will be smaller than 200)
- By sending the biggest 100 singular values and the corresponding vectors, it will give a very good picture.

ImAGE PROCESSING

Rank 5

Rank 1

Rank 15

Rank 2

Rank 50

POLAR DECOMPOSITION

- In complex numbers, we can split a complex number into its magnitude and angle form - the polar form $z=r e^{i \theta}$.
- Can we split a square matrix $A=Q S$ where Q is orthogonal, S is symmetric, positive matrix?
- Polar decomposition of a matrix ($A=S Q$ also)
- $A=U \Sigma V^{\top}=U\left(V^{\top} V\right) \Sigma V^{\top}$
- Call $Q=U V^{\top}$ and $S=V \Sigma V^{T}$
- Q does not change the size of any vector (rotates/reflects), S stretches or compresses
- Helpful in continuum mechanics
- when rotation happens and when the size gets changed during a continuous process!

Moore-Penrose inverse
B is said to be a Moore-Penrose inverse of A if

- $A B A=A$
- $B A B=B$
- $(A B) *=A B$
- $(B A) *=B A$

We denote $B=A^{\dagger}$

- A^{\dagger} exists
- A^{\dagger} is unique
- If A^{-1} exists, $A^{\dagger}=A^{-1}$.

Why it exists?

$\frac{1}{x}$ exists whenever $x \neq 0$. So for the $m \times n$ block diagonal matrix

$$
D=\left[\begin{array}{cc}
D_{1} & 0 \\
0 & 0
\end{array}\right]
$$

where D_{1} is a square diagonal matrix, and is invertible. So define

$$
D^{\dagger}=\left[\begin{array}{cc}
D_{1}{ }^{-1} & 0 \\
0 & 0
\end{array}\right]
$$

where D^{\dagger} is an $n \times m$ matrix and $D D^{\dagger} D=D \ldots$ Why unique?

M-P INVERSE FOR DIAGONAL MATRICES

$$
\Sigma=\left[\begin{array}{ccc}
\sigma_{1} & 0 & 0 \\
0 & \sigma_{2} & 0 \\
0 & 0 & \sigma_{3} \\
0 & 0 & 0
\end{array}\right] \Rightarrow \Sigma^{\dagger}=\left[\begin{array}{cccc}
\frac{1}{\sigma_{1}} & 0 & 0 & 0 \\
0 & \frac{1}{\sigma_{2}} & 0 & 0 \\
0 & 0 & \frac{1}{\sigma_{3}} & 0
\end{array}\right]
$$

- Calculate $\Sigma \Sigma^{\dagger}$ and $\Sigma \Sigma^{\dagger} \Sigma$?
- For an $m \times n$ matrix A, we can take $A^{\dagger}=V \Sigma^{\dagger} U^{\top}$
- A^{\dagger} is the Moore Penrose inverse of A.

Why it is unique?
Suppose there is another matrix B like A^{\dagger}.

- Observe that $A A^{\dagger}=A B$

$$
\begin{aligned}
A A^{\dagger} & =A B A A^{\dagger} \\
& =(A B)^{*}\left(A A^{\dagger}\right)^{*}=B^{*} A^{*} A^{\dagger^{*}} A^{*}=B^{*}\left(A A^{\dagger} A\right)^{*} \\
& =(A B)^{*}=A B
\end{aligned}
$$

- Similarly $A^{\dagger} A=B A$
- Hence $A^{\dagger}=B$

$$
A^{\dagger}=A^{\dagger} A A^{\dagger}=A^{\dagger} A B=B A B=B
$$

Solution of system of equations

We are interested in solving system $A x=b$.

- For the equation $A x=b$, there may or may not be solutions.
- Plenty of solutions/unique solution/no solution are possible.
- If there are plenty of solutions, find the solution of minimal norm
- If no solutions, find approximate solution of minimal norm

SOLUTION OF SYSTEM OF EQUATIONS

- The equation $A x=b$ has a solution if and only if $b \in R(A)$.
- Since $R(A)$ is spanned by column vectors, b must be in the column space for a solution.
- This means b should be a depending on column vectors
- This happens iff $\operatorname{rank}(A)=\operatorname{rank}(A b)$
- There is unique solution iff $N(A)=0$
- Suppose x_{0} and x_{1} are two solutions of $A x=b$
- $x_{1}-x_{0}$ should be solution of $A x=0$. That is $x_{1}-x_{0} \in N(A)$
- $x_{1} \neq x_{0}$ iff $N(A) \neq\{0\}$.
- So unique solution iff $N(A)=\{0\}$.
- Rank-nullity theorem implies $\operatorname{rank}(A)=\operatorname{rank}(A b)=n$

SOLUTION OF SYSTEM OF EQUATIONS

- There are infinite number of solutions iff $N(A) \neq\{0\}$..
- We can show that, if x_{0} is a solution, each $z \in N(A)$ gives $x_{0}+z$ a solution of same equation.
- Conversely, whenever x_{1} is any other solution, $x_{1}=x_{0}+z$ for some $z \in N(A)$, since $x_{1}-x_{0} \in N(A)$.
- Due to rank-nullity theorem, $\operatorname{rank}(A)<n$, the number of variables iff there are infinite number of solutions.

SUMMARY

$A x=b$ has

- No solution iff $\operatorname{rank}(A) \neq \operatorname{rank}(A b)$
- Unique solution iff $\operatorname{rank}(A)=\operatorname{rank}(A b)=n$
- Infinitely many solutions iff $\operatorname{rank}(A)=\operatorname{rank}(A b)<n$

LEAST SQUARE METHOD

If there are infinite number of solutions, how to find a 'suitable' solution?

- Solution of smallest size!
- $A x=b$ solvable iff $b \in R(A)=R\left(A A^{\dagger}\right)$
- $y \in R(A) \Longrightarrow y=A x=A A^{\dagger} A x \in R\left(A A^{\dagger}\right)$
- $y \in R\left(A A^{\dagger}\right) \Longrightarrow y=A A^{\dagger} x \in R(A)$
- But $P=A A^{\dagger}$ is a projection. So $b=A A^{\dagger} b$.
- So $A x=b=A A^{\dagger} b$ gives $A^{\dagger} b$ is a solution!
- Among all solutions of $A x=b, A^{\dagger} b$ has the minimal norm..

WHY IT IS LEAST SQUARE SOLUTION?

Note that $A^{\dagger} b$ satisfies the equation $A x=b$.

- Take any other solution x_{0} of $A x=b$
- $x_{0} \in H=R\left(A^{\dagger} A\right) \oplus N\left(A^{\dagger} A\right)$, orthogonal sum
- $x_{0}=A^{\dagger} b+\left(x_{0}-A^{\dagger} b\right)$
- $\left\|x_{0}\right\|^{2}=\left\|A^{\dagger} b\right\|^{2}+\left\|\left(x_{0}-A^{\dagger} b\right)\right\|^{2}$
- $\left\|x_{0}\right\| \geq\left\|A^{\dagger} b\right\|$
- Among all solutions of $A x=b, A^{\dagger} b$ has minimal norm.
- So it gives least square solution.

APPROXIMATE SOLUTION FOR INCONSISTENT SYSTEMS

The equation $A x=b$ has a solution if and only if $b \in R(A)$.

- Suppose $b \notin R(A)$. Then no solution.
- Consider $A^{\dagger} A x=A^{\dagger} b$ has a solution since $b \in R\left(A^{\dagger} A\right)=R\left(A^{\dagger}\right)$..
- $x=A^{\dagger} b$ is a solution to the above also.
- But it need not satisfy $A x=b$. So it is an approximate solution.
- If A invertible, it coincide with the actual solution.
- $\|A x-b\|^{2}=\left\|A x-A A^{\dagger} b\right\|^{2}+\left\|A A^{\dagger} b-b\right\|^{2}$
- See that $\left\langle A x-A A^{\dagger} b, A A^{\dagger} b-b\right\rangle=0$
- $\|A x-b\|^{2} \geq\left\|A A^{\dagger} b-b\right\|^{2}$
- Among all approximate solutions of $A x=b, A^{\dagger} b$ gives least error solution.

QNS

- Why low rank is decided by size of singular values?
- What is the relation between eigenvalues and singular values?
λ_{i} lies between largest and smallest singular values
- What is Carl inequality? sum of modulii of eigenvalues is less than or equal to sum of singular values.
- How approximation numbers emerges out of singular values? Using a maximum criterion for singular values.

REFERENCES

Gilbert Strang: Linear Algebra and its applications, Fourth Edn, Cengage, 2006.

THANK
 $\mathbb{Y O U}$

