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SPECTRAL THEOREM FOR MATRICES

Let A be a symmetric matrix. Then we can orthogonally diagonalize
A. That is, we can find orthogonal matrix P such that

A = PDPT

where P is an orthogonal matrix and D is a diagonal matrix.

▶ D contains eigenvalues of A (real) as its diagonal entries

▶ P contains (orthonormal) eigenvectors of A as its columns.

▶ PT P = I = PPT , Orthogonal matrix

▶ P rotates any vector by an angle (no change in magnitude)..

▶ D stretches or compresses vectors



FURTHER QUESTIONS

▶ Why only square matrices?

▶ Can we do this when A is a rectangular real matrix?

▶ What are the uses?

▶ Our aim is to have
A = UΣV T ,

U,V orthogonal and Σ is ‘diagonal’ in a way!

▶ A is an m × n matrix, Σm×n, Um×m, Vn×n

▶ Plenty of applications!
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If A is a 3 × 5 matrix,

Σ =

σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0


and U is 3 × 3, V will be 5 × 5.



▶ Let Am×n be an m × n matrix.

▶ AT An×n and AAT
m×m are square, symmetric, positive matrices..

▶ Spectral theorem ⇒ AT A = PDPT and AAT = QD̃QT .

▶ Eigenvalues of AT A and AAT are same, except for zeros..

AT Av = λv ⇒ AAT (Av) = λ(Av) ⇒ Av an eigenvalue if ̸= 0.

If Av = 0, then v corresponds to λ = 0

▶ If An×n has rank r , then n − r eigenvalues are 0 (see N(A))..

▶ Let λ1, λ2, . . . , λr be the nonzero eigenvalues (r = rank(A))..

▶ λi are all positive..

▶ P contains (orthonormal) eigenvectors of AT A as its columns.

▶ Q contains (orthonormal) eigenvectors of AAT as its columns.



THE REVERSE CALCULATION!

For a moment assume A = UΣV T .

▶ AT A = (VΣT UT )(UΣV T ) = VΣ2V T .

▶ Σ2 = ΣTΣ contains eigenvalues (positive) of AT A

▶ So Σ contains square roots of eigenvalues of AT A

▶ Also V can be taken as orthogonal eigenvectors of AT A. (i.e., P)

▶ AAT = (UΣV T )(VΣT UT ) = UΣ2UT .

▶ So U can be taken as orthogonal eigenvectors of AAT . (i.e., Q)

▶ But what guarantees A can be written so?



If A is a 3 × 5 matrix,

ΣΣT =

σ1 0 0 0 0
0 σ2 0 0 0
0 0 σ3 0 0



σ1 0 0
0 σ2 0
0 0 σ3
0 0 0
0 0 0

 =

σ2
1 0 0

0 σ2
2 0

0 0 σ2
3

 ∼ Σ2

and U is 3 × 3, V will be 5 × 5.



We have AT A = PDPT

▶ Since AT A (also AAT ) is a positive definite matrix, D contains
only positive entries on the diagonal.

▶ D = diag(λ1, λ2, . . . , λm), assume increasing order.

▶ Let σi =
√
λi and D

1
2 = diag(σ1, σ2, . . . , σm)

▶ Define |A| = VD
1
2 V T (modulus operator)

▶ Then |A|2 = AT A ..

▶ What is connection between A and |A|?
▶ Polar decomposition!



MATRIX MULTIPLICATION

Suppose v1, v2, v3 are column vectors and B = [v1 v2 v3]. Then

AB = A
[
v1 v2 v3

]
=

[
Av1 Av2 Av3

]
Suppose u1,u2,u3 are row vectors and A = [u1 u2 u3]

T . Then

AB =

u1
u2
u3

B =

u1B
u2B
u3B



AD = A

a 0 0
0 b 0
0 0 c

 =
[
v1 v2 v3

] a 0 0
0 b 0
0 0 c

 =
[
av1 bv2 cv3

]



HOW TO ESTABLISH SVD

Consider Am×n (matrix with n ≤ m) (other case is similar)

▶ A : Rn → Rm

▶ AT A is real symmetric, positive matrix n × n matrix.

▶ AT A has positive eigenvalues λi = σi
2 and orthonormal

eigenvectors v1, v2, . . . , vn in Rn.

▶ rank(A) = r ≤ n ≤ m. (Think r = 3, n = 4, m = 5)

▶ σr+1, . . . , σn = 0..

▶ Define u1 = 1
σ1

Av1, u2 = 1
σ2

Av2, . . . ur =
1
σr

Avr , in Rm

▶ Or Av1 = σ1u1, Av2 = σ2u2, . . . ,Avr = σr ur



▶ {u1,u2, . . . ,ur} are orthonormal vectors in Rm

⟨ui ,uj⟩ = δij

▶ Hence independent and can be extended to a basis for Rm

▶ Gramm-Schmidt gives ONB for Rm (extension).

▶ Let it be {u1,u2, . . . ,ur , . . . ,um}.

▶ Call Um×m = [u1 u2 . . . ur . . . um], Vn×n = [v1 v2 . . . vn]

▶ Σm×n = diag(σ1, σ2, . . . , σr ,0,0, . . . ,0) (rectangular)



If m = 5,n = 4, r = 3

Σ5×4 =


σ1 0 0 0
0 σ2 0 0
0 0 σ3 0
0 0 0 0
0 0 0 0





CLAIM: A = UΣV T

▶ Enough to show AV = UΣ

▶ A : Rn → Rm

▶ vi ∈ Rn, Avi ∈ Rm,uj ∈ Rm

▶ Av1 = σ1u1, Av2 = σ2u2, . . . ,Avr = σr ur ,Avr+1 = 0, . . . ,Avn = 0

AV = A[v1 v2 . . . vr . . . vn]

= [Av1 Av2 . . . Avr . . . Avn]m×n

= [σ1u1 σ2u2 . . . σr ur 0ur+1 . . . 0un]



AV =
[
u1 u2 . . . un . . . um

]
m×m



σ1 0 . . . 0
0 σ2 . . . 0
. . . . . .
0 0 . . . 0 = σn
0 0 . . . 0
. . . . . .
0 0 . . . 0


m×n

This gives AV = UΣ or
A = UΣV T ,

which is the SVD.



EXAMPLE

Consider

A =

 1 −1
0 1
1 0


Then

AT A =

[
2 −1

−1 2

]
and AT A =

 2 −1 1
−1 1 0

1 0 1


▶ Eigenvalues are λ = 3,1 (and 0)

▶ Singular values are
√

3,1 (and 0)



Orthogonal Eigenvectors of AT A gives

V =

[
1√
2

1√
2

− 1√
2

1√
2

]

Take u1 = 1√
3
Av1 and u2 = 1

1 Av2 and u3 as any orthonormal vector in
R3:

U =


√

2√
3

0 1√
3

− 1√
6

1√
2

1√
3

1√
6

1√
2

− 1√
3


and

Σ =

√3 0
0 1
0 0

 ,

we get A = UΣV T .



EFFECTIVE RANK OF A MATRIX

▶ Even minor calculation errors can change the rank of a matrix

▶ The matrix

A =

[
1 2
2 4.01

]
has rank 2, whereas one row is ’almost’ dependent on the other.

▶ Practically rank is 1. But any program will give the rank as 2.

▶ rank(A) = rank(AAT )(why?)

▶ For a diagonalizable matrix, rank is the number of nonzero
eigenvalues..

▶ rank(A)= number of positive singular values for any matrix..

▶ For A, singular values are 5.0080... and 0.00199 (negligible)

▶ Hence, the size of singular values decides the size of the
’effective data’ or the rank.



WHY rank(A) = rank(AT A)?

▶ Note that R(A) and R(AT A) may be in two different spaces!

▶ But N(A) and N(AT A) are subspaces of same space.

▶ We can show N(A) = N(AT A)..

▶ Hence nullity(AT A)=nullity(A).

▶ So rank(A) = rank(AT A)



IMAGE PROCESSING

▶ Suppose we want to send a picture having 1000 × 1000 pixels
from a satellite

▶ Then the matrix has 1000000 entries in it

▶ You need to send a huge sized data to transfer the file

▶ The rank of the matrix may be 200 (remaining singular values
will be zeros)

▶ many of these rows also may be negligible (singular values may
be minimal (so effective rank will be smaller than 200)

▶ By sending the biggest 100 singular values and the
corresponding vectors, it will give a very good picture.



IMAGE PROCESSING



POLAR DECOMPOSITION

▶ In complex numbers, we can split a complex number into its
magnitude and angle form - the polar form z = reiθ.

▶ Can we split a square matrix A = QS where Q is orthogonal, S
is symmetric, positive matrix?

▶ Polar decomposition of a matrix (A = SQ also)

▶ A = UΣV T = U(V T V )ΣV T

▶ Call Q = UV T and S = VΣV T (RECALL |A|)
▶ Q does not change the size of any vector (rotates/reflects), S

stretches or compresses

▶ Helpful in continuum mechanics

▶ when rotation happens and when the size gets changed during a
continuous process!



MOORE-PENROSE INVERSE

B is said to be a Moore-Penrose inverse of A if

▶ ABA = A

▶ BAB = B

▶ (AB)∗ = AB

▶ (BA)∗ = BA

We denote B = A†

▶ A† exists

▶ A† is unique

▶ If A−1 exists, A† = A−1.



Why it exists?

1
x exists whenever x ̸= 0. So for the m × n block diagonal matrix

D =

[
D1 0
0 0

]
where D1 is a square diagonal matrix, and is invertible. So define

D† =

[
D1

−1 0
0 0

]
where D† is an n × m matrix and DD†D = D . . . Why unique?



M-P INVERSE FOR DIAGONAL MATRICES

Σ =


σ1 0 0
0 σ2 0
0 0 σ3
0 0 0

 ⇒ Σ† =


1
σ1

0 0 0
0 1

σ2
0 0

0 0 1
σ3

0



▶ Calculate ΣΣ† and ΣΣ†Σ?

▶ For an m × n matrix A, we can take A† = VΣ†UT

▶ A† is the Moore Penrose inverse of A.



Why it is unique?

Suppose there is another matrix B like A†.

▶ Observe that AA† = AB

AA† = ABAA†

= (AB)∗(AA†)
∗
= B∗A∗A†∗A∗ = B∗(AA†A)∗

= (AB)∗ = AB

▶ Similarly A†A = BA

▶ Hence A† = B

A† = A†AA† = A†AB = BAB = B



SOLUTION OF SYSTEM OF EQUATIONS

We are interested in solving system Ax = b.

▶ For the equation Ax = b, there may or may not be solutions.

▶ Plenty of solutions/unique solution/no solution are possible.

▶ If there are plenty of solutions, find the solution of minimal norm

▶ If no solutions, find approximate solution of minimal norm



SOLUTION OF SYSTEM OF EQUATIONS

▶ The equation Ax = b has a solution if and only if b ∈ R(A).

▶ Since R(A) is spanned by column vectors, b must be in the
column space for a solution.

▶ This means b should be a depending on column vectors
▶ This happens iff rank(A) = rank(Ab)

▶ There is unique solution iff N(A) = 0

▶ Suppose x0 and x1 are two solutions of Ax = b
▶ x1 − x0 should be solution of Ax = 0. That is x1 − x0 ∈ N(A)
▶ x1 ̸= x0 iff N(A) ̸= {0}.
▶ So unique solution iff N(A) = {0}.
▶ Rank-nullity theorem implies rank(A) = rank(Ab) = n



SOLUTION OF SYSTEM OF EQUATIONS

▶ There are infinite number of solutions iff N(A) ̸= {0}..

▶ We can show that, if x0 is a solution, each z ∈ N(A) gives
x0 + z a solution of same equation.

▶ Conversely, whenever x1 is any other solution, x1 = x0 + z
for some z ∈ N(A), since x1 − x0 ∈ N(A).

▶ Due to rank-nullity theorem, rank(A) < n, the number of
variables iff there are infinite number of solutions.

SUMMARY

Ax = b has

▶ No solution iff rank(A) ̸= rank(Ab)

▶ Unique solution iff rank(A) = rank(Ab) = n

▶ Infinitely many solutions iff rank(A) = rank(Ab) < n



LEAST SQUARE METHOD

If there are infinite number of solutions, how to find a ‘suitable’
solution?

▶ Solution of smallest size!

▶ Ax = b solvable iff b ∈ R(A) = R(AA†)

▶ y ∈ R(A) =⇒ y = Ax = AA†Ax ∈ R(AA†)
▶ y ∈ R(AA†) =⇒ y = AA†x ∈ R(A)

▶ But P = AA† is a projection. So b = AA†b.

▶ So Ax = b = AA†b gives A†b is a solution!

▶ Among all solutions of Ax = b, A†b has the minimal norm..



WHY IT IS LEAST SQUARE SOLUTION?

Note that A†b satisfies the equation Ax = b.

▶ Take any other solution x0 of Ax = b

▶ x0 ∈ H = R(A†A)⊕ N(A†A), orthogonal sum

▶ x0 = A†b + (x0 − A†b)

▶ ∥x0∥2 = ∥A†b∥2 + ∥(x0 − A†b)∥2

▶ ∥x0∥ ≥ ∥A†b∥
▶ Among all solutions of Ax = b, A†b has minimal norm.

▶ So it gives least square solution.



APPROXIMATE SOLUTION FOR INCONSISTENT SYSTEMS

The equation Ax = b has a solution if and only if b ∈ R(A).

▶ Suppose b /∈ R(A). Then no solution.

▶ Consider A†Ax = A†b has a solution since b ∈ R(A†A) = R(A†)..

▶ x = A†b is a solution to the above also.

▶ But it need not satisfy Ax = b. So it is an approximate solution.

▶ If A invertible, it coincide with the actual solution.

▶ ∥Ax − b∥2 = ∥Ax − AA†b∥2 + ∥AA†b − b∥2

▶ See that ⟨Ax − AA†b,AA†b − b⟩ = 0

▶ ∥Ax − b∥2 ≥ ∥AA†b − b∥2

▶ Among all approximate solutions of Ax = b, A†b gives least error
solution.



QNS

▶ Why low rank is decided by size of singular values?

▶ What is the relation between eigenvalues and singular values?
λi lies between largest and smallest singular values

▶ What is Carl inequality?
sum of modulii of eigenvalues is less than or equal to sum of
singular values.

▶ How approximation numbers emerges out of singular values?
Using a maximum criterion for singular values.
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